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Kurzfassung

Punktwolken sind eine häufig genutzte Art, dreidimensionale Objekten zu beschreiben. In man-
chen Anwendungen sind jedoch andere Repräsentationen nützlicher. Gaussian Mixture Models
(GMMs) können als solch eine alternative Repräsentation genutzt werden. Ein GMM ist eine
konvexe Summe von Normalverteilungen, welche die Dichte einer Punktwolke beschreibt. In
dieser Arbeit untersuchen wir sowohl die Visualisierung, als auch die Konstruktion von GMMs.
Für die Visualisierung haben wir ein Werkzeug implementiert, welches eine Isoellipsoid- und
eine Dichtevisualisierung ermöglicht. Wir beschreiben den mathematischen Hintergrund, die
Algorithmen, und die Implementierung dieses Werkzeugs. Für die Konstruktion von GMMs
untersuchen wir mehrere Algorithmen, welche bereits zum Konstruieren von GMMs im Kontext
von 3D-Daten-Verarbeitung genutzt wurden. Wir präsentieren unsere Implementierungen des
Expectation-Maximization(EM)-Algorithmus und des Top-Down HEM Algorithmus. Weiters
haben wir die Implementierung von Geometrically regularized Bottom-Up HEM angepasst, um
eine fixe Anzahl an Gaussians zu erzeugen. Wir evaluieren diese drei Algorithmen in Bezug auf
die Qualität ihrer konstruierten GMMs. In vielen Fällen ist die statistische Likelihood, welche
durch den EM Algorithmus maximiert wird, kein zuverlässiger Indikator für die Qualität eines
GMMs. Daher nutzen wir stattdessen den Rekonstruktionsfehler einer rekonstruierten Punktwolke
basierend auf der Chamfer-Distanz. Weiters definieren wir Metriken zur Messung der Uniformität
der rekonstruierten Punktwolken und der Variation der Gaussians des GMMs. Wir demonstrieren,
dass EM die besten Resultate bezogen auf diese Metriken erzeugt. Geometrically regularized
Bottom-Up HEM ist unterlegen für niedrigere Anzahlen an Gaussians aber kann gute GMMs mit
deutlich mehr Gaussians sehr effizient erzeugen.
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Abstract

Point clouds are a common representation of three-dimensional shapes in computer graphics
and 3D-data processing. However, in some applications, other representations are more useful.
Gaussian Mixture Models (GMMs) can be used as such an alternative representation. A GMM
is a convex sum of normal distributions, which aims to describe a point cloud’s density. In
this thesis, we investigate both visualization and construction of GMMs. For visualization,
we have implemented a tool that enables both isoellipsoid and density visualization of GMMs.
We describe the mathematical backgrounds, the algorithms, and our implementation of this
tool. Regarding GMM construction, we investigate several algorithms used in previous papers
for constructing GMMs for 3D-data processing tasks. We present our implementations of the
expectation-maximization (EM) algorithm and top-down HEM. Additionally, we have adapted
the implementation of geometrically regularized bottom-up HEM to produce a fixed number of
Gaussians. We evaluate these three algorithms in terms of the quality of their generated GMMs.
In many cases, the statistical likelihood, which is maximized by the EM algorithm, is not a
reliable indicator for a GMM’s quality. Therefore, we instead rely on the reconstruction error of a
reconstructed point cloud based on the Chamfer distance. Additionally, we provide metrics for
measuring the reconstructed point cloud’s uniformity and the GMM’s variation of Gaussians. We
demonstrate that EM provides the best results in terms of these metrics. Top-down HEM is a fast
alternative, and can produce even better results when using fewer input points. The results of
geometrically regularized bottom-up HEM are inferior for lower numbers of Gaussians but it can
create good GMMs consisting of high numbers of Gaussians very efficiently.
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Figure 1: Example of mixture fitting on a guitar point cloud (based on the model guitar_0001
from ModelNet 40 [WSK+15]). Top: Original point cloud. Center: Overlaid density and ellipsoid
visualization (see Chapter 3) of a GMM consisting of 512 Gaussians. The GMM has been fitted
to the original point cloud using the EM algorithm (see Chapters 2 and 4). Bottom: A new point
cloud reconstructed from the GMM. The general shape of the object is preserved, but details are
lost.



CHAPTER 1
Introduction

1.1 Motivation

Point clouds are a common representation of three-dimensional shapes in computer graphics and
3D-data processing. They commonly occur as the result of 3D-scanning techniques, such as laser
scanning or photogrammetry. However, for some processing tasks, other representations are more
useful. In particular, applying deep learning techniques on point clouds is challenging, because
of the unordered and irregular nature of point clouds. A successful deep learning approach
for three-dimensional point clouds enables tasks such as classification, segmentation, or hole
filling, all of which are useful when working with point clouds representing three-dimensional
objects. While deep learning techniques that work directly on point clouds have been proposed
[QSMG17], various other methods transform the point cloud to another representation, such as
voxel grids [QSN+16].

A research project at TU Wien is currently exploring a novel technique for applying deep learning
methods based on Gaussian Mixture Models (GMMs) [Ano22]. A GMM is a probabilistic model
whose probability density function is a convex sum of normal distributions. GMMs can be used
as an alternative representation for 3D shapes and have been successfully used for 3D-processing
tasks such as surface reconstruction [PMA+14][Eck17], point cloud registration [EK13][EKK18],
and deep learning [BSLF18]. A GMM can be fitted to a point cloud so that its probability density
function approximates the point cloud’s density. This is illustrated in Figure 1. The construction
of GMMs has been researched for many decades [RW84], therefore there are several algorithms
available. However, it is not clear which one is most suitable for this use case. Therefore, we
want to implement, evaluate and possibly adapt several GMM construction algorithms, focussing
on algorithms that have been used for other 3D-data-processing tasks.

Additionally, to facilitate the development and the configuration of construction algorithms,
and to enable deeper insight into the novel deep learning architecture researched at TU Wien,
a visualization tool for GMMs is required. Such a tool should be able to visualize GMMs in
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1. Introduction

realtime while navigating freely through the scene. Furthermore, a Python interface is required
to access the visualization functionality from Python code. We are not aware of any 3D GMM
visualization tool that meets our requirements. The tool “gmsStudio” by Preiner et al. [PMA+14]
is able to visualize 3D GMMs, but lacks density visualization techniques. Also, it does not
provide an interface to access its functionality from Python code.

1.2 Aim of the Work

The aim of the work is two-fold.

The first goal is the development of a visualization tool for Gaussian Mixture Models. This tool
should be able to visualize GMMs with several thousands of Gaussian components in realtime
using various techniques, such as an isoellipsoid visualization, which shows one ellipsoid per
Gaussian, and a density visualization, which is based on volume rendering. It should also
be capable of displaying point clouds. The user should be able to change the parameters of
the selected visualization techniques, as well as inspect the details of single Gaussians. The
application will be written in C++ using OpenGL and Qt. Besides providing a stand-alone
application, the visualizer also has to provide a Python interface for accessing its functionality
from Python code.

The second goal of the thesis is to implement, adapt, and evaluate existing GMM-construction
algorithms. We want to compare the EM algorithm [DLR77], top-down hierarchical EM by
Eckart et al. [EKT+16], and geometrically regularized bottom-up hierarchical EM by Preiner et
al. [PMA+14]. The latter two are more efficient adaptations of the EM algorithm and have been
used in 3D-data-processing tasks, but it is unclear how much the results differ in their quality. The
first two algorithms will be implemented by ourselves in Python, while we will adapt the C++

source code of the third one to our purposes and add Python bindings. We will define appropriate
metrics for evaluation of the algorithms. Our evaluation focuses more on the difference in the
quality of the results rather than the algorithms’ efficiency.

1.3 Contributions

The main contributions of this work are as follows:

Visualization:

• We developed a tool for visualizing GMMs, providing both a stand-alone application and a
Python interface.

• We describe the mathematical background for the density visualization. In particular, we
constructed a theorem describing Gaussian density values along a ray. Additionally, we
found a mistake in a previous work on a similar problem by Jakob et al. [JRJ11] and
provide the correct solution.

2



1.4. Structure of the Work

Construction:

• PyTorch-based implementations of the EM-algorithm and the top-down HEM-algorithm.

• Adaptation of geometrically regularized bottom-up HEM: The number of Gaussians created
by this algorithm is not fixed but stochastic and depends on the configurations of the
algorithm. It is often not able to create lower numbers of Gaussians (512 or less). We
adapted the algorithm to create a fixed number of Gaussians which can be arbitrarily low.

• As the likelihood and similar measures do not describe the quality of our GMMs in a
useful way, we defined suitable metrics for evaluating the quality of GMMs regarding
reconstruction error, irregularity, and variation of Gaussians.

• Evaluation of EM, top-down HEM, and geometrically regularized bottom-up HEM regard-
ing the influence of their most important parameters.

• Comparison of EM, top-down HEM and geometrically regularized bottom-up HEM. We
focus especially on the difference in quality of the results.

1.4 Structure of the Work

Chapter 2 provides the necessary background information on Gaussian Mixtures, as well as an
overview of related work in the fields of GMM construction and visualization. We describe our
visualization algorithms and the implementation of our visualization tool in Chapter 3. In Chapter
4, we discuss our implementations and adaptations of the selected GMM construction algorithms.
These algorithms are evaluated in Chapter 5 and compared in terms of several suitable criteria.
Finally, Chapter 6 concludes the thesis and reflects on possible future work.
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CHAPTER 2
Background

2.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a probabilistic model whose probability density function
(PDF) is a weighted sum of Gaussian (normal) distributions. The PDF of a multi-dimensional
Gaussian distribution is defined as

N(x|µ,Σ) =
1

√
(2π)n|Σ|

exp
(
−

1
2

(x − µ)TΣ−1(x − µ)
)
, (2.1)

where n is the number of dimensions, µ ∈ Rn the mean, and Σ ∈ Rn×n the covariance matrix. Σ is
positive-definite and symmetric. The density is highest at x = µ and decreases in all directions
in a way defined by Σ. The eigenvectors of Σ are orthogonal and correspond to the axes of the
PDF’s isoellipsoids.

A GMM Θ is described by K Gaussians Θk = {ωk,µk,Σk}. Each Θk represents a weighted
normal distribution by its weight, mean, and covariance matrix, respectively. The weights fulfill
0 ≤ ωk ≤ 1 and

∑K
k=1 ωk = 1. The probability density function of a GMM is defined as

fΘ(x) =

K∑
k=1

ωkN(x|µk,Σk). (2.2)

Just likeN , fΘ is a valid probability density function. In particular, its definite integral is one and
it is positive for all choices of x. Figure 2.1 shows an example for a one-dimensional GMM.

Any continuous density function can be approximated to arbitrary accuracy by a GMM with
appropriately chosen parameters and sufficiently many Gaussians [GBC16] [LSW17].

GMMs have been successfully used for 3D-point-cloud-processing tasks such as surface re-
construction [PMA+14] [Eck17], point cloud registration [EK13] [EKK18] and classification
[BSLF18].
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2. Background

Figure 2.1: The plot shows the PDF fΘ of a one-dimensional GMM consisting of the three
Gaussians Θ1 = {0.2,−2, 0.3}, Θ2 = {0.5, 0, 1} and Θ3 = {0.3, 2, 2}. fΘ is equal to the sum of the
Gaussians’ density functions.

2.2 Construction

2.2.1 Introduction

The problem of finding the weights, means, and covariance matrices of a (Gaussian) mixture
model Θ that best describe the distribution of a given point dataset X is called the mixture density
estimation problem. According to Redner and Walker [RW84], this problem has been studied
for a long time, with the first publications going back as far as the 19th century. One of the first
methods for solving this problem for the case of two univariate Gaussian mixtures was proposed
by Pearson [Pea94] using the method of moments. This method works by equating the empirical
moments of the sampled data and the theoretical moments of the mixture. This process results in
a set of equations that can be solved for the parameters.

Before the rise of computers, the method of moments remained the most studied way of approach-
ing the mixture density estimation problem [RW84]. However, increased computing power made
it possible to further investigate the more powerful method of maximum likelihood. The goal of
this method is to choose the mixture model’s parameters Θ, such that it maximizes the so-called
likelihood function

LX(Θ) =

N∏
n=1

fΘ(xn), (2.3)

where N is the number of points xn in the dataset X [RW84] [MP04]. Commonly, instead of
using the likelihood itself, the logarithmic likelihood (log-likelihood) is used. It is often easier
to handle algebraically. Because of the strict monotonicity of the logarithm, it has the same
maximums.

6



2.2. Construction

log (LX(Θ)) =

N∑
n=1

log ( fΘ(xn)) (2.4)

In theory, the local maximums of LX could be found by setting its partial derivatives to zero,
which results in a set of so-called likelihood equations, whose solutions are the local maximums.
However, in the case of mixture density problems, these equations can usually not be solved by
analytic means [RW84]. Therefore, algorithms that provide approximate solutions are needed.
Classical techniques such as Newton’s method, quasi-Newton methods, and gradient-based
methods can be applied to solve this problem [RW84]. Another algorithm for this problem, which
is considered superior to the previous approaches [XJ96], is the expectation-maximization (EM)
algorithm.

2.2.2 The Expectation-Maximization Algorithm

The EM algorithm was introduced by Dempster et al. [DLR77], who formulated the algorithm as
a way of obtaining maximum likelihood estimates for incomplete data problems. They provide a
very general formulation of the algorithm which is applicable for many problems. When applying
it to the mixture density estimation problem for GMMs, it is equivalent to algorithms suggested
by other authors before [Has66] [Day69].

We explain the EM algorithm for GMMs by seeing the mixture density problem as an incomplete
data problem, following the explanation and equations by Bishop [Bis06]:

The algorithm works on the assumption that the point cloud has been sampled from a GMM
consisting of K Gaussians. Therefore, each point belongs to the Gaussian it was originally
sampled from. As we do not know which point belongs to which Gaussian, this is an incomplete
data problem, and the EM algorithm can be applied. A latent K-dimensional variable zn describing
the association between points and Gaussians is introduced for each sample point xn. Exactly one
element of zn is one, while the other ones are zero. znk is one if and only if the point xn belongs
to the kth Gaussian.

Based on this, the idea of the EM algorithm is to calculate the expected value of the latent data z
based on the point data and an initial model (expectation (E) step). Afterward, a new model that
maximizes the likelihood of the model is constructed, given the expected values of the latent data
(maximization (M) step). These two steps are repeated until a termination criterion is fulfilled
(e.g. the change of the likelihood is below a certain threshold).

The E-step calculates the expected values of znk, which are denoted as γ(znk) or γnk for short.
These values are referred to as responsibilities. They are calculated using Bayes’ theorem:

γnk = p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)∑K

j=1 p(zn j = 1)p(xn|zn j = 1)
(2.5)

The prior probability of znk being one without any information about the sample point itself is
equal to the Gaussian’s weight (p(znk) = ωk). The probability density of a sampled point being

7



2. Background

equal to xn, given knowledge about its assignment, is simply the assigned Gaussian distribution
p(xn|znk = 1) = N(xn|µk,Σk). Therefore

γnk =
ωkN(xn|µk,Σk)∑K
j=1 ω jN(xn|µ j,Σ j)

. (2.6)

In the M-step, the new means, covariance matrices, and weights are calculated using the responsi-
bilities calculated in the E-step, as described by the following equations. These formulas can be
derived from rearranging the likelihood equations:

µnew
k =

1
Nk

N∑
n=1

γnkxn, (2.7)

Σnew
k =

1
Nk

N∑
n=1

γnk(xn − µ
new
k )(xn − µ

new
k )T , (2.8)

ωnew
k =

Nk

N
, (2.9)

where Nk =
∑N

n=1 γnk.

Repeating the E- and the M-step leads to an increase in likelihood. The steps are repeated until a
convergence criterion is fulfilled.

One problem with the EM-algorithm, and maximum likelihood methods in general, is that the
likelihood can become arbitrarily high through so-called singularities: If a Gaussian’s mean falls
exactly on an input point, an arbitrarily high likelihood can be produced by choosing smaller
and smaller values in the covariance matrix, as illustrated in Figure 2.2. Equation 2.10 describes
this for a three-dimensional Gaussian with a covariance matrix of the shape σ2I, where I is the
identity matrix.

lim
σ2→0

N(xn|xn, σ
2I) = lim

σ2→0

1

(2π)
3
2σ3

= ∞ (2.10)

Measures have to be set in place to avoid the approaching of singularities, for example by setting
minima for the covariances.

The EM algorithm has several advantages, such as reliable convergence, low cost per iteration, and
ease of implementation. However, its convergence can be quite slow [RW84]. Several variants and
extensions have been developed to improve the algorithm in various ways. Some extensions focus
on speeding up convergence, for example by applying Aitken’s acceleration method [LLS87]
[Lou82] or combining it with other methods, such as conjugate gradient methods [JJ93] [SRG03],
quasi-Newton methods [Lan95] or Fisher’s scoring method [Ike00]. Some extensions focus on
speeding up the algorithm by only updating some of the data in each iteration, making them more
applicable to large data sets [NH98] [BFR+98]. Other extensions include online versions of the
EM algorithm [HG09], variants that are less prone to overfitting [KRT99], variants with increased
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2.2. Construction

Figure 2.2: A GMM on a one-dimensional point cloud consisting of two Gaussians, one of which
is collapsing onto one point. By reducing its variance, its height would increase even further,
increasing the likelihood arbitrarily.

clustering accuracy [LCH10], semi-supervised variants [GSH15] and stochastic variants that are
more likely to escape from local maxima [CCD95]. Not all of these algorithms were applied in a
3D setting. Their applications cover a wide range of different settings with different numbers of
dimensions and Gaussians.

In the following, we will describe two extensions that create so-called hierarchical GMMs. These
algorithms also lead to a significant speed-up of the algorithm. Both of these techniques have
been successfully used in 3D point cloud processing tasks.

2.2.3 Hierarchical Top-Down EM

Eckart et al. proposed an EM algorithm for the construction of hierarchical GMMs from 3D point
cloud data [EKT+16]. A hierarchical GMM consists of several levels of GMMs, where each new
level replaces the Gaussians from the previous level with new sub-GMMs, resulting in a more
complex GMM overall. The algorithm starts by fitting a mixture consisting of j Gaussians plus
one additional uniform noise cluster using the EM algorithm. j is usually a low number, such

9



2. Background

as eight. Afterward, each Gaussian ("parent") is replaced by a new sub-GMM consisting again
of j Gaussians ("children") and a noise cluster. Each data point is assigned to one or more of
those sub-GMMs using a partitioning scheme (see below). Each sub-GMM is then fitted to the
points that have been assigned to the respective parent. This procedure of subdividing and fitting
is repeated until the desired number of levels is reached.

When creating a new sub-GMM, the Gaussians are initialized on the corners of the bounding box
of the relevant points. The sub-GMMs in the last level can be recombined into one final GMM by
multiplying each Gaussian’s weight with the weights of all its parents.

The authors suggest two partitioning schemes to assign the points to the sub-GMM: Hard
partitioning assigns each point to exactly one sub-GMM, namely the one the point has the highest
parent responsibility to. Soft partitioning on the other hand assigns a point to all sub-GMMs with
a parent responsibility higher than a predefined partitioning threshold λl. In this case, additional
weights derived from the responsibilities are stored per point-parent-pair, describing the point’s
influence on the sub-GMMs. The weight pnk for the nth point and the kth Gaussian is calculated
as pnqγnk/ξ, where q is the index of the kth Gaussian’s parent, γ is the responsibility, and ξ is a
normalization term, which is the sum of all new pnk in the qth sub-GMM.

The algorithm accelerates the construction of the GMMs by parallelizing on the GPU. The
E-step is parallelized over all points and the M-step over all Gaussians. To further accelerate the
algorithm, the E-step calculates the zeroth, first and second moments T m

k of the points weighted
by their responsibilities for each Gaussian:

T 0
k =

∑
n

γnk, T 1
k =

∑
n

γnkxn, T 2
k =

∑
n

γnkxnxT
n , (2.11)

where k is the index of the Gaussian, γnk is the responsibility of the nth point to the kth gaussian
and the xn are the points. These can be calculated efficiently in parallel as part of the E-step.

The formulas of the M-step as defined in Equations 2.7, 2.8 and 2.9 are adapted for this algorithm
and rewritten in a way to make use of the moments, which simplifies the M-step.

µnew
k =

∑
n γnkxn∑

n γnk
=

T 1
k

T 0
k

(2.12)

Σnew
k =

∑
n γnkxnxT

n∑
n γnk

− µnew
k µ

new
k

T
=

T 2
k

T 0
k

− µnew
k

Tµnew
k (2.13)

ωnew
k =

∑
n

γnk

N
=

T 0
k

N
(2.14)

When using soft partitioning, the calculation of the moments T m
k is adapted to

T 0
k =

∑
n

pnqγnk, T 1
k =

∑
n

pnqγnkxn, T 2
k =

∑
n

pnqγnkxnxT
n (2.15)
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where q is the index of the parent of Gaussian k. Additionally, the calculation of the new weights
is adapted to

ωnew
k =

T 0
k∑

n pnq
. (2.16)

This algorithm speeds up GMM construction exponentially compared to classical EM.

2.2.4 Geometrically Regularized Hierarchical Bottom-Up EM

Geometrically regularized bottom-up HEM was developed by Preiner et al. [PMA+14] and is
based on an earlier work by Vasconcelos and Lippman [VL98]. We will first describe the original
technique and then describe the adaptations by Preiner et al.

Vasconcelos and Lippman proposed a hierarchical EM algorithm that works in a bottom-up-
fashion: It starts from a very fine model consisting of many Gaussians. A coarser model consisting
of fewer Gaussians is fitted to describe this initial model. This new model is then again replaced
by a coarser one and so on. This approach differs from the classical EM algorithm, as the mixtures
on each level l are not fitted to points but to the mixtures from the previous level l + 1.

The ith Gaussian’s mean, covariance matrix and weight at level l are denoted by µl
i, Σ

l
i and ωl

i
respectively, and the number of Gaussians at level l is denoted by Cl.

A simple way to fit mixtures to mixtures would be to sample a new point cloud from the source
mixture and fit the new model to those points. Following this intuition, the central idea in the
derivation of the algorithm is to consider a virtual sample X = {X1, . . . , XCl+1} of the model,
where Xn is a set of points drawn from the nth Gaussian of the model. The number of points for
set n is Mn = ωl

n|P|, where |P| is the total number of virtual points and ωl
n is the weight of the nth

Gaussian. On this virtual sample, the EM algorithm is applied. Using the law of large numbers,
this calculation becomes independent from the actual values of the sample and ultimately results
in a modified E-Step, where the responsibility of Gaussian n from the last level l + 1 and Gaussian
k from the new level l is calculated by

γnk =

[
N

(
µl+1

n |µ
l
k,Σ

l
k

)
exp

(
−1

2 tr
((
Σl

k

)−1
Σl+1

n

))]Mn

ωl
k∑

j

[
N

(
µl+1

n |µ
l
j,Σ

l
j

)
exp

(
−1

2 tr
((
Σl

j

)−1
Σl+1

n

))]Mn

ωl
j

, (2.17)

where tr is the trace (the sum of the elements in the main diagonal of a matrix).

The formulas of the M-step to calculate the new model based on the responsibilities are modified
as follow:

ωl
k =

∑
n γnk

Cl+1 (2.18)

µl
k =

∑
n γnkMnµ

l+1
k∑

n γnkMn
(2.19)
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2. Background

Σl
k =

∑
n γnkMn

(
Σl+1

n + (µl+1
n − µl

k)(µl+1
n − µl

k)T
)∑

n γnkMn
(2.20)

None of these formulas depend on the values of the sample X, so no actual sample needs to be
created.

The motivation of the extension by Preiner et al. is that a statistically optimal fit, such as provided
by maximum likelihood approaches, is prone to smoothing the signal in a way that prevents robust
reconstruction. Therefore, they extend the hierarchical EM method by geometric constraints to
prevent the signal and noise from blending.

The regularization aims to stop Gaussians that are too far away from each other from merging
in the reduction step. To measure the distance between two Gaussians the Kullback-Leiber
divergence is used:

DKL(Θt,Θs) =
1
2

(
dM(µt,Θs))2 + tr(Σ−1

s Σt) − 3 − ln
|Σt|

|Σs|

)
(2.21)

where Θt and Θs are two Gaussians, consisting of their corresponding ω, µ and Σ values, and

dM(µt,Θs) is the Mahalanobis distance
√

(µt − µs)TΣ−1
s (µt − µs). A threshold ρ is defined to be

the maximum distance between two Gaussians. Their modified HEM algorithm only calculates
γnk for which DKL(Θl+1

n ,Θl
k) < ρ. All other γnk will be zero. To provide intuitive control over

this maximum distance, the authors provide a parameter α, such that ρ = α2/2.

Another change to the original algorithm is that the calculation of the new weights (see Equation
2.18) is modified to use a weighted sum

ωl
j =

∑
i

γi jω
l+1
i . (2.22)

Furthermore, the authors propose an initialization technique that places a Gaussian on each point.
The initial covariance matrices are chosen in a way to reflect the local distribution of the nearby
points inside a configurable radius r.

2.2.5 Alternative Approaches

Hosseini and Sra investigated using Riemannian optimization to generate GMMs [HS17]. Other
classical techniques have been advanced as well such as stochastic gradient descent [GP19] or
moment-based methods [MV10]. These methods are not designed in the context of finding a
representation for 3D shapes.

PointGMM by Hertz et al. worked specifically on 3D point clouds [HHGCO20]. It uses deep
learning techniques to generate hierarchical GMMs from point clouds. Their neural network
learns class-specific priors (categories such as chair, table, airplane), which are then used to
generate a GMM for the given point cloud. In our use case, we do not have such priors.
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2.3. Visualization

2.3 Visualization

In this section, different techniques for visualizing three-dimensional Gaussian Mixture Models
are reviewed.

2.3.1 Gaussian Isoellipsoids

The rendering of Gaussian isoellipsoids is a method that has been commonly used for the
visualization of GMMs in both 2D [Bis06] [VL98] and 3D [PMA+14] [Eck17] [HHGCO20]. In
this visualization technique, one ellipsoid is displayed per Gaussian, resembling a contour of
constant density. A two-dimensional example for this is shown in Figure 2.3a.

These ellipsoids can be expressed mathematically as all points x where the Mahalanobis distance
is equal to the desired contour value c:

(x − µ)TΣ−1(x − µ) = c2 (2.23)

If only one contour per Gaussian is rendered, c is commonly chosen to be one. This resembles
the 1-σ-distance in the one-dimensional case. The resulting ellipsoids have axes ±c

√
λiei where

λi are the eigenvalues and ei the normalized eigenvectors of Σ [Baj11].

This visualization technique gives insight into the internal structure of the GMM and the orienta-
tion and extent of the individual Gaussians.

(a) Isoellipsoids (colored) and isosurface (black) (b) Density heatmap (darker colors represent
higher density)

Figure 2.3: Different visualizations of a two-dimensional GMM consisting of three Gaussians.

2.3.2 Isosurfaces

As an alternative to rendering iso-ellipsoids for each Gaussian, one can also display one or several
isosurfaces of the GMM’s probability density function. Isosurfaces have been used in both 2D
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GMM visualization [Bis06] as well as in 3D [Kaw18]. A two-dimensional example is displayed
in Figure 2.3a.

One approach for rendering three-dimensional isosurfaces of arbitrary three-dimensional functions
is to cast rays through the image pixels and find the position of the desired isovalue on that ray.
This could be done by using simple ray-marching [TT84], where the GMM is sampled at
equidistant sample points along the ray until an isovalue crossing is found. This method has the
risk of missing isovalue crossings when the interval step size is too high for the given GMM.
More sophisticated methods use numerical methods such as Newton’s method or regula falsi
[Har93]. One such method, that works on sums of isotropic Gaussians has been proposed by
Blinn [Bli82] and could be generalized to work on arbitrary GMMs.

An alternative approach is to sample the GMM’s density function in a grid, from which the
surface can then be extracted as a mesh using Marching Cubes [LC87]. The resolution of the grid
needs to be high enough to not miss important details. Eckart [Eck17] proposed an extension of
Marching Cubes specifically for isosurface extraction of hierarchical GMMs.

2.3.3 Density Visualization

Instead of visualizing individual Gaussians or isosurfaces, one can also aim for the visualization
of the values of the three-dimensional probability density function itself, analogous to a heatmap
visualization in 2D (Figure 2.3b). Density visualizations of three-dimensional GMMs have been
used in [PMA+14], [Eck17], and [JRJ11]. Using this visualization technique the users can easily
get an impression of what distribution or object the GMM is representing. Information about the
parameters of the individual Gaussians is lost, however.

The rendering of scalar fields is well researched in the field of volume rendering, which deals
with the generation of images from 3D volumetric data. These techniques are commonly used in
medical visualization to visualize data acquired through computed tomography (CT) or magnetic
resonance imaging (MRI). The following content of this section is based on [EHK+06].

To create realistic volume renderings, mathematical models based on physics are required. One
such model is the emission-absorption model. In this model, the gas particles are able to emit
and absorb light, but more complex effects, such as scattering or indirect illumination, are not
possible. We will take a look at this model in more detail here:

In the emission-absorption-model, particles both emit light and absorb incoming light.To calculate
the color of a point on the image plane, we shoot a ray from the eye through the point into the
volume. We then integrate the values along this ray.

If we assume a model based on absorption only, the background radiance I0 is absorbed by the
particles in front. The light reaching the eye would therefore be calculated by:

I(D) = I0e−
∫ D

s0
κ(t)dt (2.24)

s0 represents the position where the light enters the volume from the back. D is the position
where the light leaves the volume. κ(t) is the non-negative absorption coefficient at ray position t.
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If the emission of every particle along the ray is considered as well, the formula is adapted to the
so-called volume-rendering integral:

I(D) = I0e−
∫ D

s0
κ(t)dt

+

∫ D

s0

q(s)e−
∫ D

s κ(t)dtds (2.25)

The term left of the plus sign is simply the absorption formula defined before. The right term
takes the particles’ emissions into account. q(s) is called the source term and describes the light
radiance emitted at ray position s. The exponential function inside the integral ensures that this
newly emitted light is absorbed by the particles in front in the same way as the background
radiance.

This integral is the basis for many volume rendering techniques. In practice, this model is usually
not applied directly, as it is not always an option to solve this integral. In most applications, the
data is provided as a voxel grid rather than a continuous function. Therefore, the integral is instead
approximated by Riemann sums, using a combination of ray-marching and alpha blending.

When visualizing GMMs, the volume-rendering integral can be evaluated analytically for simple
choices of q and κ. Existing visualizations by Eckart et al. [EKT+16] and Preiner et al. [PMA+14]
simply accumulate all density values along the viewing ray, which corresponds to q(s) being the
GMM’s density at the ray position s, and no absorption taking place (i.e. κ(t) = 0). Jakob et
al. use GMMs to render homogeneous participating media [JRJ11]. They choose q(s) to be the
density value as well, and choose κ(t) to be a constant σt.
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CHAPTER 3
Visualization

This chapter describes the algorithms we use for visualizing GMMs. Example applications of
these methods are the examination of fitting results and the introspection of deep learning layers
that process GMMs.

Two visualization techniques have been implemented: The rendering of Gaussian isoellipsoids,
and additive density visualization. Sections 3.1 and 3.2 describe these techniques respectively. In
Section 3.3 the graphical user interface is described.

3.1 Isoellipsoid Rendering

A very straightforward GM visualization technique is displaying a 1-σ-ellipsoid per Gaussian,
indicating its mean and covariance. These ellipsoids are defined as described in Section 2.3.1 as
the surface which fulfills:

(x − µk)TΣ−1
k (x − µk) = 1 (3.1)

The three axes of the isoellipsoids are defined as ±
√
λiei, where λi is the ith eigenvalue of Σk, and

ei is the normalized eigenvector of Σk. We use instanced rendering to display the ellipsoids. That
is, one sphere (described by 1,984 triangles) is rendered multiple times, once per Gaussian, with
corresponding transformation matrices. The 4 × 4 transformation matrix for a Gaussian (using
homogeneous coordinates) is calculated from the three-dimensional eigenvectors in the following
way: (√

λ1e1
√
λ2e2

√
λ3e3 µk

0 0 0 1

)
(3.2)

In case the determinant of the resulting transformation matrix is negative, we switch the signs of
the first three columns to provide proper face ordering. Backface culling has to be enabled to
prevent otherwise occurring z-fighting for very thin ellipsoids.

Isoellipsoid visualization provides insight into the means and covariances of the Gaussians. A
rendering of the original point cloud can be easily combined with this visualization. However,
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the Gaussians’ weights ωk are not considered in this visualization. To provide information about
these, we have implemented the option to color the ellipsoids by their weight (see Figure 3.1).

Figure 3.1: Results of ellipsoid rendering of a GMM of 512 Gaussians representing the Standford
Bunny. The colors of the Gaussians indicate their weights.

Alternatively to coloring by the weights ωk, the ellipsoids can also be colored by the Gaussian
amplitudes. While the weights describe the total amount of influence of the Gaussian on the
GMM, the Gaussian’s amplitude is the highest density value of the Gaussian and is calculated
by ωk/

√
(2π)3|Σk|. Gaussians with smaller isoellipsoids have a higher amplitude than Gaussians

with larger isoellipsoids of the same weight. Therefore, the small-ellipsoid Gaussians may have a
stronger impact on the GMM’s density values in the area of their ellipsoid. Because of this, the
isoellipsoid rendering is often more similar to the density visualization when using amplitude
coloring rather than weight coloring. This is demonstrated in Figure 3.2.

3.2 Density Visualization

While the isoellipsoid rendering provides information about the location and extent of the
individual Gaussians, it does not provide a clear visualization of the density values the mixture
assigns to each point in 3D space. Density visualizations aim to visualize the probability density
function more directly. In this section, we will discuss our approach for density visualization
and our implementation. Section 3.2.1 describes the approach for our technique. Section 3.2.2
describes how to calculate the volume-rendering integral, which is a central part of our algorithm.
Section 3.2.3 describes further implementation details and Section 3.2.4 describes a technique for
accelerating the rendering. Section 3.2.5 describes open challenges and future work.
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(a) Ellipsoids colored by weights (b) Ellipsoids colored by ampli-
tudes

(c) Density visualization

Figure 3.2: Comparison of different visualization techniques on a GMM representing the model
guitar_0001 from ModelNet 40 [WSK+15]. In (a), we see that the larger Gaussians have the
highest weights. However, in (b), it becomes visible that some small Gaussians have equal or
higher amplitudes, such as the ones at the tuning pegs or on the bridge. These Gaussians produce
higher density values, which can also be seen in the accumulated density visualization in (c).

3.2.1 Approach

Our density visualization is based on the volume-rendering integral (Equation 2.25). Usually,
volume data is provided as a 3D grid of values, and the volume-rendering integral is approximated
using ray marching and alpha blending. Our problem differs from classical volume visualization
in that we do not start from a grid of samples but an analytical density function. By using a ray-
marching-based approach, we would lose the advantage of having an exact analytical description
of the GMM. Therefore, we will integrate the density along the ray analytically.

19



3. Visualization

The volume-rendering integral is defined for each pixel on the viewing ray

r(t) = x0 + td, (3.3)

where x0 is the origin of the ray (the camera position), d the normalized direction from the camera
to the pixel on the image plane, and t the distance from the origin. By using the GMM’s density
fΘ as source term q and using neither absorption nor background radiance (i.e. κ(t) = 0, I0 = 0),
the volume-rendering integral from Equation 2.25 becomes the accumulation of density values
along the viewing ray:

∫ ∞

0
fΘ(r(t))dt (3.4)

The next section describes how this integral is solved. The resulting value is then mapped to a
color scheme to produce the final pixel color.

This approach is similar to what other authors have done to visualize their GMMs, such as Eckart
et al. [EKT+16] and Preiner et al. [PMA+14]. These authors did not provide the formulas
required for the rendering, so we will explore the details of this technique further in the next
sections.

3.2.2 Solving the Volume-Rendering Integral

In this section, we discuss the volume-rendering integral in Equation 3.4, i.e. integrating a GMM’s
density values along a ray. The GMM’s probability density function (PDF) is defined as

fΘ(x) =

K∑
k=1

ωkN(x|µk,Σk), (3.5)

where K is the number of Gaussians, ωk, µk and Σk are the weight, mean and covariance matrix
of the corresponding Gaussian respectively (see Section 2.1). The volume-rendering integral –
which we will denote as FΘ(r) from now on – is therefore:

FΘ(r) =

∫ ∞

0
fΘ(r(t))dt =

∫ ∞

0

K∑
k=1

ωkN(r(t)|µk,Σk)dt

=

K∑
k=1

∫ ∞

0
ωkN(r(t)|µk,Σk)dt

(3.6)

To calculate the integral over the GMM’s PDF, it is sufficient to calculate the integral of each
Gaussian, and then sum up the results. To help solve this integral, we developed Theorem 1
(illustrated in Figure 3.3):
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Theorem 1. The values of a weighted Gaussian’s PDF with parameters ω,µ,Σ along a ray
r(t) = x0 + td are described by a weighted one-dimensional Gaussian with mean µ′, variance σ′2

and weight ω′:

ωN(r(t)|µ,Σ) = ω′N(t|µ′, σ′2) (3.7)

where the parameters have the following values:

µ′ =
dTΣ−1(µ − x0)

dTΣ−1d
(3.8)

σ′2 =
1

dTΣ−1d
(3.9)

ω′ = ω
√

2πσ′2N(r(µ′)|µ,Σ) (3.10)

Proof. By Replacing the N-notations by the definition of the Gaussian distribution, Equation 3.7
can be written as

ω√
(2π)3|Σ|

exp
(
−

1
2

(r(t) − µ)T Σ−1 (r(t) − µ)
)

=
ω′
√

2πσ′2
exp

(
−

1
2

(
(t − µ′)2

σ′2

))
. (3.11)

We plug in the definition of r(t) into the left side and rewrite it as follows:

ω√
(2π)3|Σ|

exp
(
−

1
2

(r(t) − µ)T Σ−1 (r(t) − µ)
)

=
ω√

(2π)3|Σ|
exp

(
−

1
2

(x0 + td − µ)T Σ−1 (x0 + td − µ)
)

=
ω√

(2π)3|Σ|
exp

(
−

1
2

(
(dTΣ−1d)t2 + (2dTΣ−1(x0 − µ))t +

(xT
0Σ
−1x0 − 2xT

0Σ
−1µ + µTΣ−1µ)

))
(3.12)

The right side of Equation 3.11 is rewritten as follows:

ω′
√

2πσ′2
exp

(
−

1
2

(
(t − µ′)2

σ′2

))
=

ω′
√

2πσ′2
exp

(
−

1
2

(
1
σ′2

t2 −
2µ′

σ′2
t +

µ′2

σ′2

))
(3.13)

21



3. Visualization

(a) 2D-Illustration of the viewing ray r(t) from the camera x0 through a Gaussian (represented by a
density heatmap – darker values represent higher density). µk marks the mean of the Gaussian.

(b) Graph of the the Gaussian’s PDF along the ray. As Theorem 1 states, this function is itself a one-
dimensional Gaussian with mean µ′ and variance σ′2, scaled by ω′.

Figure 3.3: Illustration of Theorem 1.
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Taking the logarithm on both sides enables us to compare the coefficients. Comparing the
coefficients of t2 we get

dTΣ−1d =
1
σ′2
−→ σ′2 =

1
dTΣ−1d

, (3.14)

confirming Equation 3.9. Comparing the coefficients of t results in:

2dTΣ−1(x0 − µ) = −
2µ′

σ′2
−→ µ′ = −dTΣ−1(x0 − µ)σ′2 =

dTΣ−1(µ − x0)
dTΣ−1d

, (3.15)

confirming Equation 3.8. Comparing the remainder of the equation results in

ω√
(2π)3|Σ|

exp
(
−

1
2

(
(xT

0Σ
−1x0 − 2xT

0Σ
−1µ + µTΣ−1µ)

))
=

ω′
√

2πσ′2
exp

(
−
µ′2

2σ′2

)
. (3.16)

By rearranging for ω′ we get

ω′ =
ω
√

2πσ′2√
(2π)3|Σ|

exp
(
−

1
2

(
(xT

0Σ
−1x0 − 2xT

0Σ
−1µ + µTΣ−1µ) −

µ′2

σ′2

))
. (3.17)

Because of

−
µ′2

σ′2
= (1 − 2)

µ′2

σ′2
=

1
σ′2

µ′2 −

(
2
µ′

σ′2

)
µ′, (3.18)

the exponent in Equation 3.17 can be rewritten as

−
1
2

((
1
σ′2

)
µ′2 −

(
2
µ′

σ′2

)
µ′ + (xT

0Σ
−1x0 − 2xT

0Σ
−1µ + µTΣ−1µ)

)
= −

1
2

(
(dTΣ−1d)µ′2 + (2dTΣ−1(x0 − µ))µ′ + (xT

0Σ
−1x0 − 2xT

0Σ
−1µ + µTΣ−1µ)

)
= −

1
2

(
r(µ′) − µ

)T
Σ−1 (

r(µ′) − µ
)
.

(3.19)

The last step applies the inverse operations of the rearrangements in Equation 3.12. We can
conclude

ω′ =
ω
√

2πσ′2√
(2π)3|Σ|

exp
(
−

1
2

(
r(µ′) − µ

)T
Σ−1 (

r(µ′) − µ
))

= ω
√

2πσ′2N(r(µ′)|µ,Σ), (3.20)

confirming Equation 3.10 and proving Theorem 1. �

Having proven this theorem, we use this knowledge for solving the volume-rendering integral
FΘ(r). Each evaluation of a Gaussian {ωk,µk,Σk} along the ray can be replaced by an evaluation
of the corresponding one-dimensional Gaussian {ω′k, µ

′
k, σ

′2
k }:

FΘ(r) =

K∑
k=1

∫ ∞

0
ωkN(r(t)|µk,Σk)dt

=

K∑
k=1

ω′k

∫ ∞

0
N(t|µ′k, σ

′2
k )dt

(3.21)
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We know that
∫ x
−∞
N(t|µ, σ2)dt = Φ

(
x−µ
σ

)
, where Φ(x) is the cumulative distribution function of

the standard Gaussian distribution, i.e. Φ(x) =
∫ x
−∞
N(t|0, 1)dt. Using this knowledge as well as

Φ’s properties regarding limits and symmetry, the integral can be replaced:

K∑
k=1

ω′k

∫ ∞

0
N(t|µ′k, σ

′2
k )dt =

K∑
k=1

ω′k lim
x→∞

(
Φ

(
x − µ′k
σ′k

)
− Φ

(0 − µ′k
σ′k

))

=

K∑
k=1

ω′k

(
1 − Φ

(
−µ′k
σ′k

))

=

K∑
k=1

ω′kΦ

(
µ′k
σ′k

)
(3.22)

This means the volume-rendering integral can be calculated by evaluating Equation 3.23.

FΘ(r) =

K∑
k=1

ω′kΦ

(
µ′k
σ′k

)
(3.23)

Alternatively, this can also be expressed in terms of the error function erf(x) = 2Φ(x
√

2) − 1 or
the complementary error function erfc(x) = 2Φ(−x

√
2).

FΘ(r) =

K∑
k=1

ω′k
2

1 + erf

 µ′k
√

2σ′k

 =

K∑
k=1

ω′k
2

erfc

− µ′k
√

2σ′k

 (3.24)

Comparison with Related Work

Jakob et al. [JRJ11] examined the following integral along a ray r(t) = x0 + td:∫ b

a
N(r(t)|µ,Σ) exp(−κt)dt (3.25)

When setting κ = 0, this is equal to our volume-rendering integral per Gaussian without the
weight ωk (Equation 3.6). However, the closed-form solution provided in the paper by Jakob et
al. does not match ours and appears to be wrong. We found the correct solution for this integral
and present it in this section.

For this, we consider a generalization of integral 3.25 with an added variable t0:∫ b

a
N(r(t)|µ,Σ) exp(−κ(t − t0))dt (3.26)

When setting t0 = a, this integral is a volume-rendering integral for a single Gaussian with a
constant absorption term κ, which we believe could be the integral that should actually be solved
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3.2. Density Visualization

in that paper [JRJ11]. The exponential term reduces the Gaussian’s impact to the final image with
increasing distance from the ray origin.

The following table compares the solutions provided by Jakob et al. and ours. The differences are
highlighted.

Jakob et al.

∫ b

a
N(r(t)|µ,Σ) exp(−κ t )dt =

C0

(
erf

(
C3 + 2C2b

2
√

C2

)
− erf

(
C3 + 2C2a

2
√

C2

))
(3.27)

C0 =

exp
(

C2
3

4C2
−C1

)
(2π)3/2 √|Σ|

(3.28)

C1 =
1
2

(x − µ)TΣ−1(x − µ) − κ b (3.29)

Ours

∫ b

a
N(r(t)|µ,Σ) exp(−κ (t − t0) )dt =

C′0

(
erf

(
C3 + 2C2b

2
√

C2

)
− erf

(
C3 + 2C2a

2
√

C2

))
(3.30)

C′0 =

exp
(

C2
3

4C2
−C′1

)
(4π)

√
2C2

√
|Σ|

(3.31)

C′1 =
1
2

(x − µ)TΣ−1(x − µ) − κ t0 (3.32)

C2 =
1
2

dTΣ−1d (3.33)

C3 = dTΣ−1(x0 − µ) + κ (3.34)

To solve integral 3.26, we first applied Theorem 1 to simplify it and replace the vectors and
matrices with scalar values. This made the integral easier to use as input to a symbolic integral
solver to find the solution. The integral becomes:

∫ b

a
ω′N(t|µ′, σ′2) exp(−κ(t − t0))dt, (3.35)

where µ′ =
dTΣ−1(µ−x0)

dTΣ−1 d
, σ′2 = 1

dTΣ−1 d
, and ω′ =

√
2πσ′2N(r(µ′)|µ,Σ). The solution to this

integral is

ω′

2
exp

(
κ(σ′2κ − 2µ′ + 2t0)

2

) (
erf

(
b + σ′2κ − µ′
√

2σ′2

)
− erf

(
a + σ′2κ − µ′
√

2σ′2

))
(3.36)

By rearranging this formula and replacing µ′, σ′2, and ω′ with their definitions, we get the result
shown in Equation 3.30.
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3. Visualization

(a) Default density visualization (b) Logarithmic density visualization

(c) Density visualization with inverted colors (d) Inverted log-density visualization

Figure 3.4: Density visualizations of a GMM consisting of 512 Gaussians representing the
Stanford Bunny model. Logarithmic visualization makes the object appear more solid, while the
default visualization is showing the density differences along the surface more clearly. Values
outside of the corresponding colorbar are mapped to the nearest color value.

3.2.3 Implementation Details

GLSL does not provide a function to evaluate Φ or one of the error functions directly in the
shader. However, C++’s standard library contains the function std::erfc, which approximates
the complementary error function. In a preparation step, this function is evaluated at regular
sample points. The sample points are stored in an OpenGL texture, which is later sent to the GPU
for rendering.
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3.2. Density Visualization

A naive implementation of this rendering principle uses a compute shader to calculate the
accumulated density per pixel by calculating ω′k, µ′k and σ′k for each Gaussian and using Equation
3.23 to accumulate all those values. After calculating the accumulated density FΘ(r), a predefined
color mapping is applied to generate colors from the calculated values. As other authors have
used logarithmic visualizations ([EKT+16]), we also provide the option to calculate the logarithm
of the integrals before mapping them to the color table.

This approach produces visually satisfying results (Figure 3.4) and is also able to render gen-
eralized Gaussian mixtures with negative weights (Figure 3.5). However, it takes too long to
render for real-time purposes, as for each Gaussian, several expensive calculations have to be
performed per pixel. For example, rendering one of our test mixtures with 20,000 Gaussians took
between 130ms and 140ms (using an Nvidia RTX 2060), which is not practical for an interactive
application.

Figure 3.5: Density visualization of a Gaussian mixture with 5 Gaussians, three of which have
negative weights. Values outside of the colorbar are mapped to the nearest color value.

3.2.4 Acceleration

To accelerate the rendering of the density visualization, we set the densities of each Gaussian
below a threshold τ to zero. This way, each Gaussian’s influence is limited to the inside of its
τ-isoellipsoid. These τ-isoellipsoids are rendered in the same way as done in the isoellipsoid
visualization (Section 3.1). However, instead of rendering a color into the output texture, the
accumulated density of the corresponding Gaussian at the current pixel is calculated in the

fragment shader. This is done by calculating µ′k, σ′k, ω′k and ω′kΦ
(
µ′k
σ′k

)
(Equation 3.23). The single

contributions of all relevant Gaussians are then added automatically into a floating-point texture
by using OpenGL’s additive blending. For this to work correctly, writing into the depth buffer
has to be turned off, so that every Gaussian’s contribution is rendered into the buffer independent
of the rendering order. Additionally, front-face culling is enabled, so that each Gaussian only
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3. Visualization

calculates its contributions one time. The resulting texture is then passed to a compute shader,
which maps each accumulated density value to a color. This approach has also been described by
Jakob et al. [JRJ11].

The choice of τ influences both rendering time and accuracy. A too low τ results in poor accuracy
and visible ellipsoid outlines, while choosing τ too high leads to a long rendering time. A simple
heuristic we use for determining τ automatically is by multiplying the density value that maps to
the maximum of the color table with 0.0001.

This approach improves the rendering time significantly. Rendering a GMM with 20,000 compo-
nents is accelerated from 140ms to below 10ms, with hardly visible changes in the output result.
Figure 3.6 illustrates the difference in accuracy when changing τ.

(a) τ = 0.125 · 10−8 (b) τ = 30.125 · 10−8 (c) τ = 50.125 · 10−8

Figure 3.6: Density visualizations of a GMM consisting of 512 Gaussians representing the
Stanford Bunny model with different acceleration parameters τ. (a) is indistinguishable from the
exact rendering, while the others show a decrease in accuracy with an increase of τ.

3.2.5 Future Work

The approach described in the previous sections does not include shading effects and depth
information. Therefore, important visual cues are missing. Surfaces behind the closest surface
shine through and may make it impossible to interpret the result correctly without rotation,
especially for scenes with higher depth complexity. The results could be improved by rendering
the depth of the nearest isoellipsoids’ back faces plus a fixed offset into the depth buffer before the
main pass. This would prevent further away Gaussians from being rendered and shining through
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3.3. Visualizer GUI

the Gaussians in the front. An alternative to this approach would be to use more sophisticated
choices for the source term q(s) and the absorption coefficient κ(t). Ideally, κ would depend
on the density at position t, with higher densities absorbing densities behind them. q would
include an illumination model using the PDF’s gradient as the normal vector. We are unaware
of an exact solution to such an integral. Approximating the integral using ray-marching and
alpha-compositing is another possibility. This would require a fast way of transforming the
GMM’s PDF to a voxel grid.

3.3 Visualizer GUI

We have implemented a graphical user interface using Qt in C++. Figure 3.7 shows a screenshot
of the visualizer in use.

The user can load a point cloud and a mixture file. When loading a point cloud or a mixture, the
camera position is chosen automatically to fit the data in the viewport. Using mouse controls the
camera position can be changed. The available rendering techniques can be enabled and disabled
individually. Besides point cloud-, ellipsoids, and density rendering, we also provide a Gaussian
positions rendering, which renders a colored point at each Gaussian’s center. This is useful for
debugging purposes and detecting small Gaussians in the model. Gaussians with zero weight or
non-positive definite covariance matrices can be filtered out if desired.

The interface also enables changing rendering parameters, such as the isoellipsoid’s threshold
value, coloring options for all visualizations, the acceleration threshold, etc.

In the right sidebar, a list of Gaussians is provided, each one represented by an index and its mean
position. When selecting a Gaussian from the list, the Gaussian’s ellipsoid color changes to red,
and additional information is shown in the bottom right part of the interface. It is also possible to
pick a Gaussian by clicking on it in the ellipsoid or position visualization.

Besides the graphical user interface, we also created a Python library interface. This is realized
using the library Pybind11 [Jak].

29



3. Visualization

Figure 3.7: Screenshot of our graphical user interface with ellipsoid-rendering active. Gaussian 2
is selected and therefore displayed in red. The other Gaussians are colored by their weight.
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CHAPTER 4
Construction: Implementation

In this chapter, we describe our implementations and adaptations of classical EM, top-down
HEM by Eckart et al. [EKT+16] and geometrically regularized bottom-up HEM by Preiner et
al. [PMA+14]. Both HEM algorithms have been used in 3D-data-processing tasks. We have
implemented classical EM and top-down HEM ourselves. The code for geometrically regularized
bottom-up HEM was provided by Reinhold Preiner and we adapted it to our needs.

Our goal is to create GMMs with hundreds of Gaussians that describe surfaces in 3D space.
This goal leads to other requirements on the algorithms than when using GMMs for different
applications, such as describing a low number of clear clusters. In particular, care has to be taken
to keeping the algorithms numerically stable, even when working with low-valued responsibilities.
Additionally, each Gaussian’s minimum thickness has to be limited.

4.1 Classical EM

The EM algorithm we have implemented is based on the description in chapter 2.2.2. CPU-based
Python implementations such as the one in scikit-learn [scia] are too slow for our use case. We
use the GPU to accelerate the computation, which allows us to process thousands of input points
and fit several hundred Gaussians. We accomplished this using Python and PyTorch, which
enable performing matrix operations on the GPU.

As stated in Section 2.2.2, the EM algorithm for GMM construction works by repeating the
so-called expectation (E) and maximization (M) steps. The E-step calculates the responsibilities
γnk, which are the probabilities that point n belongs to Gaussian k, by using the following formula:

γnk =
ωkN(xn|µk,Σk)∑K
j=1 ω jN(xn|µ j,Σ j)

(4.1)

where ωk, µk and Σk are the weight, mean and covariance matrix of the kth Gaussian respectively.
K is the number of Gaussians. xn is the nth point of the point cloud.
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4. Construction: Implementation

The M-step follows the E-step and calculates the new values for the Gaussians from the responsi-
bilities calculated in the E-Step using the following equations:

Nk =

N∑
n=1

γnk (4.2)

µnew
k =

1
Nk

N∑
n=1

γnkxn (4.3)

Σnew
k =

1
Nk

N∑
n=1

γnk(xn − µ
′
k)(xn − µ

′
k)T (4.4)

ωnew
k =

Nk

N
(4.5)

where N is the number of points.

These two steps are repeated until a convergence criterion is fulfilled. In our implementation, the
convergence criterion is fulfilled if the change of the average log-likelihood is less than a given
threshold for a given number of iterations.

Implementing these formulas naively causes certain instabilities in the algorithm. The following
sections will discuss these problems and the solutions we apply to them.

4.1.1 Numerical Problems

The formula for the weighted Gaussian probability density function, which is used in the E-Step
of the algorithm, has some numerically unfavorable properties. The formula is:

ωkN(xn|µk,Σk) =
ωk√

(2π)3|Σk|
exp

(
−

1
2

M(xn,µk,Σk)
)

(4.6)

where M is the squared Mahalanobis distance

M(xn,µk,Σk) = (xn − µk)TΣ−1
k (xn − µk). (4.7)

If a point xn is far away from a Gaussian’s mean µk, M becomes high, which leads to exp
(
− 1

2 M
)

becoming small. Therefore, when evaluating Equation 4.6 in code, the result becomes zero very
easily, which leads to responsibilities becoming zero as well, even though the responsibilities’
real values would be higher and still in the range of floating-point precision. In the worst case, this
problem may cause all responsibilities for a Gaussian becoming zero, which leads to undefined
means and covariances in the M-step.

To solve this problem, we use an approach taken from an implementation of the EM algorithm
by Mo Chen [Che20]. This implementation applies several strategies to increase the numerical
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4.1. Classical EM

accuracy of the algorithm. One of those strategies is to perform several operations in a logarith-
mic space. Instead of performing the calculation according to Equation 4.6, we calculate the
logarithmized values %nk using the following formula:

%nk = log
(
ωkN(xn|µk,Σk)

)
= log

 ωk√
(2π)3|Σk|

 − 1
2

M(xn,µk,Σk) (4.8)

This way, small values outside the floating-point precision are represented by negative numbers.
For example, instead of trying to store 10−80, which exceeds 32-bit floating-point precision, we
would store log(10−80) = −184.2068, which can be stored with sufficient precision.

Using this approach, the calculation for the responsibilities γnk has to be adapted as well. The
formula for the responsibilities can be rewritten as follows:

γnk =
ωkN(xn|µk,Σk)∑K
j=1 ω jN(xn|µ j,Σ j)

= exp

log
(
ωkN(xn|µk,Σk)

)
− log

 K∑
j=1

ω jN(xn|µ j,Σ j)




= exp

%nk − log

 K∑
j=1

exp
(
%n j

)


(4.9)

The last part of this equation, log
(∑K

j=1 exp
(
%n j

))
, can be evaluated in a numerically stable way

using PyTorch’s function logsumexp [Con19].

By moving the exp evaluation to the end of the calculation of the responsibilities, we keep higher
numerical accuracy throughout the calculations. This way, we do not run into the same numerical
problems.

Despite the increased numerical stability, in rare cases, it still happens that all responsibilities for
a Gaussian become zero. In this case, the position and covariances of such a Gaussian become
not-a-number (NaN), and the weights become zero. If that happens, our implementation sets the
positions and covariances to default values and leaves the weight at zero, so the algorithm can
continue without problems.

Another numerical problem occurred during the calculations of the covariance matrices in the
M-Step. In principle, the formulas we are using should always create positive definite matrices.
However, due to numerical issues, this is not always the case. To ensure the valid continuation
of the algorithm, we check if the new matrices and their inverses are still positive definite by
checking the signs of the matrix’s principal minors. If they are not, we do not use them and keep
the covariance matrices from the previous step.

33



4. Construction: Implementation

4.1.2 Regularization

A common problem with the EM algorithm, or maximum likelihood approaches for GMM
construction in general, is that a Gaussian’s position could become equal to a point’s position
and then reduce its covariances, approaching a singularity, therefore increasing the likelihood
of that single point (Section 2.2.2). This could result in a very high overall likelihood, while
the mixture model itself becomes useless. Similarly, the smallest eigenvalue of the covariance
matrix of a Gaussian that describes a surface can also become smaller and smaller, creating
arbitrarily high density values on the surface and creating high densities outside the surface
(illustrated in Figure 4.1). To avoid Gaussians becoming arbitrarily small like this we add a small
value ε to the eigenvalues of the covariance matrices. This approach was also used in other EM
implementations such as [Che20] and [scia]. To do this, we make use of Theorem 2:

Theorem 2. Let A = B + εI, where B is a positive-definite symmetric n × n-matrix, I is the
identity matrix, and ε is a real number. A has the same eigenvectors as B and its eigenvalues are
B’s eigenvalues + ε.

Proof. B can be written as its eigenvalue decomposition QΛQ−1, where Q is the matrix containing
the eigenvectors and Λ the diagonal matrix containing the eigenvalues. εI can be written as
QεIQ−1. Therefore, A can be written as QΛQ−1 + QεIQ−1 = Q(Λ + εI)Q−1 [sta]. As the latter
is an eigenvalue decomposition of A, this shows that A has the same eigenvectors as B, while the
eigenvalues are increased by ε. �

Using this theorem, the M-step is adapted such that it adds εabs to the diagonal elements of the
original covariance matrix:

Σ
reg
k = Σnew

k + εabsI (4.10)

Figure 4.1: Illustration of several 2D-Gaussians fitted on points (red) with the only difference
being the smaller eigenvalue decreasing from left to right. Without regularization, Gaussians can
shrink onto the points of a surface, increasing densities on those points arbitrarily high. Densities
outside of the points (upper left and lower right in the graphics) also increase this way. With
regularization, Gaussians cannot be arbitrarily thinned.
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Σnew
k comes from Equation 4.4 and I is the identity matrix.

To preserve scale invariance of the results, we chose εabs depending on the point cloud’s bounding
box size. We chose abs = max(εrel · p, 10−9), where p is the length of the longest side of the
point cloud’s bounding box and εrel is a free parameter. We chose 10−9 as a lower limit for
εabs to avoid numerical problems. Choosing the right εrel controls the Gaussian’s "thickness",
avoids convergence to singularities and numerical problems, and also prevents the algorithm from
creating high densities far away from the surface at the cost of decreased likelihood.

4.1.3 Initialization

We tested several initialization strategies for the EM algorithm.

Method rnp (random normal positions) is a method described in [MP04]. Here, the Gaussian
positions are sampled from a normal distribution:

µ1, . . . ,µk
i.i.d
∼ N(x,V) (4.11)

where x is the average sample point and V is the sample covariance matrix of the point cloud.
The covariance matrices of the Gaussians are initialized as V and the weights are initialized as
1/K, where K is the number of Gaussians.

Method k-means applies the k-means clustering algorithm on the point data. The centers of
the clusters are used as Gaussian means. The initial covariances are calculated from all the
points that have been assigned to the respective cluster. As a complete k-means execution can
be very time-consuming, we only use 20 iterations for this initialization. We use the k-means
implementation by scikit-learn [scib].

Method fps serves as a faster alternative to k-means and performs farthest point sampling (code
from [QYSG17]) to sample K roughly equally spaced points from the point cloud as candidates
for Gaussian means. Each point from the original point cloud is then assigned to its nearest
Gaussian mean and a single M-step is performed to calculate the initial model.

The impact of the initialization techniques on the results is discussed in Section 5.5.1.

4.1.4 PyTorch Implementation

PyTorch offers mathematical functions on vectors, matrices, and tensors, similar to Matlab.
To perform the necessary operations on tensors, we need to expand the input points, which
are stored in a tensor of shape (N × 3), along a new axis K times, where K is the number of
Gaussians. Similarly, the GMM’s parameters need to be repeated N times, where N is the
number of points. This way, both input points as well as Gaussian means are described by
(N × K × ∗)-tensors, which makes them easy to combine and the formulas straightforward to
implement (* is 3 for positions and Gaussian means, 3 × 3 for covariances, and 1 for weights).
The implementation can be extended to construct several GMMs of the same size at once by
adding a batch dimension to the beginning of each tensor. When using high numbers of points or
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Gaussians, the implementation needs to be extended such that only a certain number of point-
Gaussian combinations are considered at once to avoid out-of-memory errors. However, storing
the responsibility matrix stays a memory bottleneck and limits the maximum numbers of points
and Gaussians.

While our Python implementation is faster than CPU-based implementations such as the one by
scikit-learn, it does not reach the speed described for the C++/CUDA-implementation by Eckart
et al. [EKT+16]. Execution times for different settings are described in Section 5.5.1.

4.2 Top-Down HEM

Eckart et al. [EKT+16] described a hierarchical EM algorithm (Section 2.2.3). The key idea of
this algorithm is to start by fitting a mixture containing j Gaussians, and then repeatedly refining
it by replacing each Gaussian with a new sub-GMM consisting of j new Gaussians. The final
number of Gaussians is jl, where l is the number of levels. This process is illustrated in an
example in Figure 4.2.

In each subdivision step, points are assigned to sub-GMMs using a partitioning scheme. This way,
only a subset of all point-Gaussian pairs has to be considered each iteration, which leads to the
increase in performance. Hard partitioning assigns each point to one sub-GMM, soft partitioning
assigns each point to all sub-GMMs with corresponding responsibility larger than a threshold λl.
The original implementation of Eckart et al. calculates zeroth, first, and second moments for each
Gaussian in the E-step (formulas for soft partitioning) by

T 0
k =

∑
n

pnqγnk, T 1
k =

∑
n

pnqγnkxn, T 2
k =

∑
n

pnqγnkxnxT
n , (4.12)

where k is the index of the Gaussian, q is the index of the parent Gaussian, γnk is the responsibilities
of the Gaussian to the nth point, and p is the respective point weighting factor. These moments
are used to calculate the new Gaussian parameters in the M-step:

µnew
k =

∑
n pnqγnkxn∑

n pnqγnk
=

T 1
k

T 0
k

(4.13)

Σnew
k =

∑
n pnqγnkxnxT

n∑
n pnqγnk

− µnew
k µ

new
k

T
=

T 2
k

T 0
k

− µnew
k

Tµnew
k (4.14)

ωnew
k =

∑
n

pnqγnk

N
=

T 0
k

N
(4.15)

We have implemented the algorithm in Python using PyTorch [pyt], which required some adap-
tations of the original algorithm so that it fits the tensor-based programming scheme. Also, we
have left out the noise cluster from the original algorithm, as we currently work with models that
do not contain noise.
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−→

(a) Level 1

−→

(b) Level 2

−→

(c) Level 3

Figure 4.2: Isoellipsoid-visualization of the generated GMM at different times during the top-
down HEM algorithm using j = 8, three levels, and the fps-initialization technique. Each row
represents one level, the left is the result of the initialization, the right the GMM after the final
iteration on that level.

4.2.1 Numerical Problems

To increase the numerical stability of the algorithm, we used the same strategies as in classical
EM (Sections 4.1.1, 4.1.2).

Eckart et al. use Equation 4.14 for calculating the covariance matrices. This formula is math-
ematically equivalent to the original formula from the EM algorithm (Equation 4.4). This
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moment-based-version is suggested as it simplifies the parallel computation of the covariance
matrices. However, as two high values are subtracted from each other, a lot of accuracy is
lost in the later digits, leading to decreased numerical stability and more frequent creation of
non-positive definite matrices.

Therefore, we use the original formula from the EM algorithm. As we use a tensor-based strategy
to parallelize the calculation of the responsibilities, we are not able to calculate the moments
conveniently during the E-step. That is why we experience no loss of efficiency by using the
original formula.

4.2.2 Initialization

Initialization is performed several times in this algorithm, as both the first coarse mixture and the
later sub-GMMs need to be initialized. We implemented the following initialization techniques:

Method bb is based on the initialization technique from the original paper. The Gaussian means
are initialized at the corners of the axis-aligned bounding box of the respective data. One
disadvantage with this approach is that it is not rotation invariant. For example, if we would
fit a GMM to a 2D plane embedded in 3D space, we would get different results depending on
the rotation of the plane. In the worst case, if the point cloud is planar and close to parallel to
the coordinate system’s axes, this can lead to several Gaussians ending up at the same position,
which effectively reduces the representative power of the GMM. Our test dataset contains a lot of
surfaces parallel to the axes, so this is a relevant problem.

We have implemented the method eigen as an alternative to bb to avoid the problems described
above. eigen places the initial means on the corners of a box which is centered on the mean of
the points. The box’s side lengths correspond to twice the eigenvectors of the points’ covariance
matrix multiplied by the square roots of their corresponding eigenvalues. If the points are planar
(i.e. the smallest eigenvalue is smaller than the regularization parameter εabs (Section 4.1.2)), we
instead place the Gaussians on the corners and the middle points of the sides of a rectangle defined
by the two largest eigenvectors. The initial covariance matrices are equal to the covariance matrix
of the points.

Furthermore we have implemented methods rnp and fps, which are adaptations of the same-named
techniques for classical EM (Section 4.1.3). The four initialization techniques are illustrated in
Figure 4.3.

We will discuss the difference of the methods regarding the quality of their results in Chapter 5.
Typical results of the algorithm with initialization strategies are shown in Figure 4.4.
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4.2. Top-Down HEM

(a) bb

(b) eigen (c) fps (d) rnp

Figure 4.3: Results of different initialization techniques for j = 8 on the model bed_0001.

(a) bb (b) eigen (c) fps (d) rnp

Figure 4.4: Final results on a planar point cloud using soft partitioning, initialized by different
techniques using j = 8 and l = 3. bb and eigen shows symmetries, while fps and rnp appear more
chaotic.
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4.2.3 PyTorch Implementation

To get the speedup that the hierarchical algorithm provides we need to make sure that the E-step
only calculates the responsibilities of the relevant Gaussian-point-pairs, as all other ones will
be zero anyway. To do this, we create a tensor mask_indices of shape (P × 2), where P is the
number of relevant Gaussian-point-pairs. For each pair, the index of the point and the index of
the Gaussian are stored. To create mask_indices, we retrieve all the indices of non-zero point
weighting factors pnk. Using these indices, we can fetch all the relevant points and Gaussians
and store them in tensors of shape (P × ∗) (* is 3 for positions and Gaussian means, 3 × 3 for
covariances, and 1 for weights). This way, we can similarly combine them as in the classical
EM algorithm. To calculate the sums of Gaussian densities per point, we make use of PyTorch’s
sum-function by placing all the previously calculated densities into one tensor, on which we can
then perform the sum operation. Similarly to regular EM, the algorithm can be extended such that
the densities for only a certain number of pairs are calculated at once to prevent out-of-memory
errors. Still, as we need to store the whole responsibility matrix, our implementation is limited in
its maximum number of points and Gaussians.

In some cases, no points may be assigned to a sub-GMM at all. This leads to the weights of all
children becoming zero. To still end up with a correct final GMM in such a case, we replace these
children with their parent Gaussian in a postprocessing step.

Our implementation does not reach the speed reported for the C++/CUDA-implementation by
Eckart et al. [EKT+16]. Execution times for different settings are described in Section 5.5.2.

4.3 Geometrically Regularized Bottom-Up HEM

The C++-code for the geometrically regularized Bottom-Up HEM [PMA+14] (Section 2.2.4) is
open source. We added Python bindings using Pybind, enabling us to call the algorithm from our
Python framework. However, for our use case and our comparisons with the other algorithms, we
require GMMs with a fixed number of Gaussians. While we could still work with smaller GMMs
by filling them up with zero-weight Gaussians, we cannot use GMMs with a higher number of
Gaussians. However, this HEM algorithm often convergences before reaching the desired number
of Gaussians and therefore produces a much higher number of Gaussians than desired. Therefore,
we adapted it as described below.

The algorithm starts with one Gaussian per point and then repeatedly reduces the mixture to a
smaller one by a constant reduction factor δ (per default δ = 3). In the original implementation,
for each Gaussian it is individually decided if it is copied to the new level using δ−1 as the
probability. This way, fewer Gaussians than our goal number can be selected as the number of
selected Gaussians is not deterministic. To prevent this from happening, our modification always
selects max(Cδ−1,G) random Gaussians, where C is the number of Gaussians on the last level
and G is the desired final number of Gaussian.

Afterward, the actual geometrically regularized HEM steps are performed, which adapt the
Gaussians in the new level by taking the previous level’s Gaussians in its neighborhood into
account. However, some of the previous level’s Gaussians will not influence any of the new
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4.3. Geometrically Regularized Bottom-Up HEM

Gaussians, as they are too far away from every selected Gaussian. These so-called orphans will
simply be added to the new level after the HEM steps, increasing the number of Gaussians again.
This reduction process is repeated until the size of the new model does not differ from the size of
the model in the previous level. As this convergence might be reached before reaching the desired
Gaussian count, our modification assigns each orphan to the selected Gaussian with the smallest
KL-divergence. This way, no orphans remain, and the number of Gaussians is always reduced.
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CHAPTER 5
Construction: Evaluation

5.1 Introduction

In this chapter, we will discuss our evaluation and comparison of the selected GMM construction
algorithms. Throughout this evaluation, we will fit GMMs on point clouds sampled from meshes
from the ModelNet 40 dataset [WSK+15]. For our experiments, we use 200 geometric models,
the first five from each category. See Figure 5.1 for a few examples.

We will start by taking a look at the evaluation metrics in Section 5.2, then we discuss normaliza-
tion concerning spatial scaling in Section 5.3, and finally, we look at the evaluation strategy in
Section 5.4. We will discuss the results of the individual algorithms in Section 5.5 and compare
them in Section 5.6.

Figure 5.1: Four exemplary models from the ModelNet40 dataset from the categories airplane,
bed, chair and person.
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5.2 Metrics

We discuss several properties of GMMs and propose metrics to quantify them. In this chapter,
we will refer to two different kinds of point clouds: For each mesh, we sample a source point
cloud PS uniformly from the mesh’s surfaces, used to fit the GMM, and an evaluation point
cloud PE used as reference when computing certain metrics. We use PE to avoid giving high
scores to overfitted GMMs that are not a good representation of the underlying surface. Our
evaluation point clouds have different sizes for different metrics. We are interested in measuring
the log-likelihood, the reconstruction error, irregularity, and Gaussian variation.

5.2.1 Log-Likelihood

The likelihood of GMM Θ on the point cloud P is defines as

LP(Θ) =
∏
x∈P

fΘ(x), (5.1)

where fΘ is the probability density function of the GMM Θ. We can write the log-likelihood as

log(LP(Θ)) =
∑
x∈P

log( fΘ(x)). (5.2)

The likelihood on the source point cloud PS is maximized by the EM algorithm. It is the basis
for model selection methods like the Akaike information criterion or the Bayesian information
criterion [Bie04]. High density values on the mesh’s surface generally lead to a high log-
likelihood, making it a candidate for measuring the goodness of fit.

For our evaluation, we track the average log-likelihood per point on the evaluation point cloud PE

L(Θ) =
1
|PE |

∑
x∈PE

log( fΘ(x)). (5.3)

Dividing by the number of points leads to results that are independent of the point count. As we
evaluate on an evaluation point cloud PE rather than the original point cloud PS , we avoid giving
high scores to overfitted models. In our experiments, we chose |PE | = 1, 000, 000 for calculating
L.

The likelihood has several disadvantages: Densities close to zero get logarithmized to large
negative numbers, which may skew the result more than appropriate for our use case. Another
disadvantage is that the likelihood only considers densities on the surface while ignoring undesired
high densities elsewhere. These properties make the likelihood unfavorable for evaluating the
GMM’s representative power regarding the underlying model. Therefore, we will rarely consider
L in the discussion of the results.
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(a)
L = −10.843
R = 1.780 (b)

L = −9.831
R = 0.700 (c)

L = −7.739
R = 1.693

Figure 5.2: Density visualization and reconstructed point clouds for different fits on the same
model with the respective log-likelihood L (higher is better) and reconstruction error R (lower
is better). While (a) gets bad scores for both L and R, (c) gets a better L than (b) because it is
using thinner Gaussians with higher densities on the surface. However it has worse R because of
reconstructed points outside the original surface.

5.2.2 Reconstruction Error

Another approach to measuring the quality of a fit is to sample a new point cloud PΘ from the
generated GMM Θ and compare it with the evaluation point cloud PE . Eckart et al. [EKT+16]
used this approach. They calculate the distance from each point in a reference point cloud
to its nearest neighbor in the reconstructed point cloud. They then use the root mean square
distance as the basis for their metric. However, this does not take potential outlying points in the
reconstructed point cloud into consideration. We extend their approach by using the Chamfer
distance to calculate the difference between these two point clouds, which is defined as

dCD(P1, P2) =
1
|P1|

∑
x∈P1

min
y∈P2
‖x − y‖22 +

1
|P2|

∑
x∈P2

min
y∈P1
‖x − y‖22. (5.4)

This technique calculates the squared distance of each point of both clouds to its nearest neighbor
in the other point cloud. Averaging these distances gives the result.
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5. Construction: Evaluation

The Chamfer distance has been used in Deep Learning to compare point clouds reconstructed
from learned representations with their original versions [AYG19][GFK+18]. Because we also
generate representations for point clouds, this is a very similar use case, which motivates using
the same strategy.

We calculate the reconstruction error R as the square root of the Chamfer distance between PE

and PΘ.

R(Θ) =
√

dCD(PE , PΘ) (5.5)

For our experiments, we chose |PE | = |PΘ| = 100, 000 for the calculation of R.

Other than the likelihood, this metric also responds to high densities far away from the original
surface. Figure 5.2 shows both L and R values on some exemplary GMMs. As this Figure illus-
trates, these values do not always correlate. High outlying densities create a worse reconstruction
error while having no impact on the likelihood. As we are interested in outlying densities, R is
better suited for our evaluation than L.

5.2.3 Irregularity

An ideal density representation of the mesh’s surface should have the same density value on each
surface point. A point cloud sampled from the GMM should appear uniform along the surface. In
practice, due to the nature of GMMs, the density will vary along the surface, and the points will
not be perfectly uniformly distributed.

(a) I = 0.562 (b) I = 0.586 (c) I = 0.602 (d) I = 0.719

Figure 5.3: Reconstructed point clouds from different fits on the same model with increasing
irregularity. Point clouds with lower irregularity look more uniform along the surface.

To evaluate this irregularity, we sample a point cloud PΘ from the generated GMM. We then
filter out outliers by removing all points in PΘ whose nearest neighbor in PE is further away than
the maximum distance of a point in PE to its nearest neighbor in PΘ. We then project the points
onto the nearest mesh surface, i.e. each point in PΘ is replaced by the nearest surface point of the
original mesh (using the library Open3D [ZPK18]). Our irregularity metric I is defined as the
coefficient of variation of the nearest-neighbor-distances from the evaluation point cloud PE to
the processed sampled point cloud %(PΘ):
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I(Θ) =

√
1

|PE |−1
∑

x∈PE

(
dΘ(x) − dΘ

)
dΘ

(5.6)

where dΘ(x) is the distance from x to the nearest-neighbor in %(PΘ):

dΘ(x) =

(
min

y∈%(PΘ)
‖x − y‖2

)
(5.7)

and dΘ is the average nearest-neighbor distance

dΘ =
1
|PE |

∑
x∈PE

dΘ(x). (5.8)

Using the projected point cloud is necessary to get reliable results, as otherwise, the distances
from the surface to the points may skew the result if there is a high amount of scattering around
the surface (which is considered by R). Outlier filtering before projection is performed because
the outlier’s projections could skew the nearest neighbor distances on the edges of the surfaces. A
more uniform GMM produces a lower I than a more irregular one. Figure 5.3 shows GMMs
with varying levels of uniformity and their respective I values.

5.2.4 Gaussian Variation

For certain applications, the variation of the Gaussian’s sizes may be important. While each
Gaussian technically has an infinite extent, we describe the Gaussian’s "size" by calculating the
volume of the Gaussian’s 1-σ-ellipsoid 4

3π
√
|Σ|. As a metric for Gaussian variation, we track the

coefficient of variation of those volumes. This is equal to calculating the coefficient of variation
of the Gaussians’ determinants’ square roots:

V(Θ) =

√
1

K−1
∑K

k=1 (vΘ(k) − vΘ)2

vΘ
, (5.9)

where K is the number of Gaussians of the GMMΘ, vΘ(k) is the square root of the kth Gaussian’s
determinant

vΘ(k) =
√
|Σk|, (5.10)

Σk is the kth covariance matrix, and vΘ is the average vΘ:

vΘ =

K∑
k=1

vΘ(k). (5.11)

Figure 5.4 shows GMMs with varying levels of Gaussian variation and their respectiveV values.
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(a)V = 0.904 (b)V = 1.743 (c)V = 2.439

Figure 5.4: Different fits on the same model with increasing variation in Gaussians.

5.2.5 Additional Statistics

Additionally, we track the number of 0-Gaussians, which are Gaussians with weight 0 or Gaus-
sians that have been removed during the algorithm. We also track the algorithms’ execution times.
We measured these execution times on a PC with an Intel Core i7-6700 CPU, 16 GB RAM, and
an NVIDIA GeForce GTX 1060 GPU. These are very implementation-dependent and should not
be generalized to the algorithms themselves, as we did not focus on reducing computation time.
This applies especially to geometrically regularized bottom-up HEM, as it is the only algorithm
implemented in C++ instead of Python.

5.3 Metric Normalization

The results of some of our metrics depend on the spatial extent of the input model. Calculating
the same metric on the same GMM in two different scales will produce different results. This is
problematic as results from different meshes are not comparable, and results of larger models will
dominate the mean values.

To solve this problem, we normalize the scale of the models. A naive approach is to scale the
bounding boxes to a uniform size. This does not lead to satisfying results, as the scaled sizes of
the models still differ too much.

Our approach calculates the average nearest neighbor distance η̂ in the evaluation point cloud PE .
A scaling factor γ is then calculated by dividing a reference average nearest neighbor distance
ηre f by our observed distance.

γ =
ηre f

η̂
(5.12)

This way, we can scale the point cloud and the GMM using the scaling factor γ, such that all
point clouds have the same average nearest neighbor distance. For our experiments, we chose
evaluation point clouds of size |PE | = 100, 000 and ηre f = 0.2027.
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5.4. Strategy

Instead of scaling the models in advance, we calculate the metrics on the original scale and then
normalize the results. We scale R by multiplying with γ and L by subtracting 3 ln(γ). I andV
are scale-independent and do not need to be scaled.

The effect of this normalization process is illustrated on exemplary L values in Figure 5.5.

Figure 5.5: Comparison of L values of 20 models (original and normalized) for seven different
algorithm configurations (each column represents one algorithm configuration). The normalized
values show less variation.

5.4 Strategy

Our evaluation will take place in two stages: First, we examine each algorithm and the behaviors
of its parameters individually. This provides insight into the mechanics of the algorithm and
facilitates the selection of algorithm configurations to use for the second stage. In the second
stage, we compare the algorithms to each other.

To evaluate the impact of a parameter, we fix the other parameters of the algorithm to reasonable
values and test different values for the parameter of interest. For each experiment, we execute
the selected methods on our 200 model dataset. Afterward, the previously discussed metrics on
the results are calculated and normalized. We compare the methods by comparing the average
metrics (denoted as AVG) of their results. Additionally, for L, R,V and I, we also calculate the
estimated standard error of the mean (SEM) to determine if the differences between two means
are expected to be significant or not. For the numbers of 0-Gaussians and the execution times, we
calculate the standard deviation of the results to describe the scattering of the measurements.
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We cannot rule out the parameters behaving differently for other choices than tested in our
experiments. Inspecting more parameter configurations would exceed this thesis’s scope.

5.5 Results

In this section, we discuss the results of our experiments and the impacts of each algorithm’s
parameters.

5.5.1 EM

In this section, we will describe the results of our experiments done using our EM implementation
(Section 4.1). We will inspect the influence of the regularization parameter εrel (abbreviated in
this chapter by ε), the initialization technique, the number of input points, and the number of
Gaussians. In all our experiments, the algorithm ran until the change of the average log-likelihood
was less than 0.1 for 20 iterations. We configured the algorithm to use sub batches of 10,000
points in the E- and M-steps to not exceed the available memory.

Figure 5.6: Results for EM regarding average reconstruction error R and average irregularity
I of our experiments for the regularization parameter (using fixed initialization fps) and the
initialization method (using fixed regularization parameter 10−5). Results of the regularization
experiments are connected by a line. Bars indicate standard errors of the means. Results are
interpreted in the corresponding sections.

50



5.5. Results

Regularization

In our EM implementation, we apply a regularization by adding a small value to the eigen-
values of the covariance matrices (Section 4.1.2). This way, we control the "thickness" of the
Gaussians. The choice of ε defines this value relative to the bounding box size. We tested the
values 10−4, 10−5, 10−6, and 10−7 for ε, using 100,000 input points, 512 Gaussians, and the
fps-initialization. The results for our metrics are displayed in Table 5.1. Average R and I values
are plotted in Figure 5.6. Exemplary GMMs are shown in Figure 5.7.

ε
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD

10−4 -10.402 0.030 1.105 0.030 0.5351 0.0011 0.349 0.006 0.000 0.000 31.072 0.540
10−5 -9.512 0.022 0.563 0.008 0.5461 0.0013 0.497 0.015 0.000 0.000 39.417 11.654
10−6 -8.545 0.030 0.555 0.015 0.5581 0.0013 0.873 0.032 0.005 0.071 57.440 23.926
10−7 -7.553 0.076 0.692 0.026 0.5634 0.0012 1.254 0.043 0.005 0.071 64.643 26.268

Table 5.1: Results of ε-experiments for EM. Best values are formatted in bold. L, I, V, and
execution time rise with decreasing ε. R is best for 10−5 and 10−6.

Choosing a lower ε leads to a higher likelihood L. This is expected, as the regularization
deliberately rejects a higher likelihood in exchange for numerical stability and avoiding of
singularities.

The reconstruction error R results in a U-shape (see Figure 5.6), with the lowest and highest
ε-values creating worse results than the middle ones, which are on a similar level. With a too
high ε, the reconstructed points are scattered widely around the surface, leading to higher nearest-
neighbor distances. With a too low ε, the algorithm creates high densities on the extensions of
the surfaces (see Section 4.1.2), which leads to reconstructed points far away from the surface,
resulting in a high reconstruction error. This is especially true for models with long, even surfaces,
on which the algorithm places long Gaussians. Round, smooth objects do not show this problem
to such an extent. This behavior is illustrated in Figure 5.7.

Both the irregularity I and the Gaussian variationV are higher when using a lower ε. When the
Gaussian ellipsoids are allowed to become smaller, there is more room for variation in their size
than otherwise.

A lower ε also leads to a higher execution time, as the model needs more iterations to converge.
The difference ranges from 31 seconds for 10−4 to 65 seconds for 10−7. The standard deviation
increases from 0.5 seconds to 26.

In conclusion, in this experiment, an ε of 10−5 is a good trade-off between having a low and more
reliable reconstruction error R, as well as providing good results for I,V and execution times,
compared to the higher values.

51



5. Construction: Evaluation

(a) ε = 10−4

(b) ε = 10−5

(c) ε = 10−7

Figure 5.7: Resulting GMMs for the models chair_0001, bed_0001 and vase_0001 using EM
with different values for ε. Results for 10−4 are very blurry. Results for 10−7 are more detailed, but
the results for chair_0001 and bed_0001 contain high densities outside of the surface. vase_0001
does not show this problem as it contains less flat surfaces.

Initialization

We have implemented the EM-initialization techniques rnp, fps, and k-means (Section 4.1.3). We
tested these initialization techniques using 100,000 input points, 512 Gaussians, and ε = 10−5.
The results for our metrics are displayed in Table 5.2. Average R and I values are plotted in
Figure 5.6.
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init.
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
rnp -9.572 0.025 0.871 0.017 0.5516 0.0013 1.045 0.026 0.050 0.478 65.125 16.855
fps -9.512 0.022 0.563 0.008 0.5461 0.0013 0.497 0.015 0.000 0.000 39.417 11.654

k-means -9.525 0.023 0.574 0.008 0.5468 0.0011 0.518 0.019 0.000 0.000 55.446 12.332

Table 5.2: Results of initialization-technique-experiments for EM. Best values are formatted in
bold. fps and k-means are superior to rnp for all metrics. fps is the fastest technique.

(a) rnp

(b) fps

(c) k-means

Figure 5.8: Resulting GMMs for the models laptop_0004, bed_0001 and plant_0004, using EM
with different initialization strategies. fps and k-means produce similar results, rnp produces less
detailed and smoother results.
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No significant difference can be observed for fps and k-means regarding L, R, I, orV. The rnp-
method initializes the positions randomly, while the other two aim to distribute small Gaussians
equally along the surface. This leads to the final GMMs containing larger Gaussians when using
rnp (as shown by the average determinants for rnp, fps and k-means, which are 555.067, 5.361
and 5.450, respectively). These larger Gaussians tend to extend outside of the actual surface,
similar to what happens when using low ε-values, which plays a role in the higher reconstruction
error R. The larger Gaussians make the GMMs appear smoother in the density visualization,
which can be seen in Figure 5.8. However, regarding the irregularity I of the reconstructed point
cloud, rnp also appears slightly worse than the other two techniques. As results of rnp typically
contain larger Gaussians, the Gaussian variationV is higher than the other two techniques.

When using rnp, more iterations are needed on average to converge, resulting in the longest
execution time of the three methods. k-means and fps need similarly many iterations, however
our implementation of fps is faster than our k-means implementation, which makes it the fastest
technique in this experiment.

Concluding, rnp performs worse in terms of all our metrics but generates visually smoother
results. fps and k-means create similar results. Our specific implementation of fps is faster,
making it the more favorable technique in this examination.

Number of Points

Using fewer input points decreases execution time, but may harm the quality of the results. To
inspect this, we tested the algorithm using 10,000, 50,000, and 100,000 sample points, with 512
Gaussians, ε = 10−5 and both fps-initialization as well as rnp-initialization. The results are shown
in Table 5.3. Results for R and I are plotted in Figure 5.9. Exemplary GMMs are shown in
Figure 5.10.

init. N
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
fps 10,000 -9.688 0.071 0.578 0.007 0.6622 0.0031 0.745 0.027 0.000 0.000 4.491 1.211
fps 50,000 -9.514 0.023 0.560 0.008 0.5531 0.0012 0.540 0.018 0.000 0.000 20.279 6.500
fps 100,000 -9.512 0.022 0.563 0.008 0.5461 0.0013 0.497 0.015 0.000 0.000 39.417 11.654
rnp 10,000 -9.615 0.054 0.836 0.016 0.6006 0.0029 1.281 0.031 0.055 0.578 7.773 2.081
rnp 50,000 -9.576 0.025 0.874 0.018 0.5542 0.0013 1.102 0.035 0.030 0.299 32.521 8.155
rnp 100,000 -9.572 0.025 0.871 0.017 0.5516 0.0013 1.045 0.026 0.050 0.478 65.125 16.855

Table 5.3: Results of point-count-experiments for EM. Best values are formatted in bold. The
difference between 50,000 and 100,000 points is small. Using 10,000 points leads to worse
results.

In terms of L and R there are only small differences between different point counts, where 10,000
appears only slightly inferior to the other two numbers for fps. When using the rnp-initialization,
10,000 even produces slightly better results regarding R.

We can see a strong difference when inspecting the irregularity I: While 50,000 points create only
slightly more irregular GMMs than 100,000, reducing to 10,000 points increases the irregularity
strongly. When using fps-initialization this leads to the highest average I-value in all of our
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Figure 5.9: Results for EM regarding average reconstruction error R and average irregularity I
of our experiments for the number of points (using initialization fps or rnp and 512 Gaussians)
and the number of Gaussians (using fixed number of points 100,000). For easier interpretation,
results from the same experiments are connected by lines in order of the changing parameter.
Bars indicate standard errors of the means. For comparison with Figure 5.6, the results of the
regularization-experiments are also shown in the background. Reducing the point count leads to
an increase in I. Reducing the Gaussian count leads to an increase in R and also affects I.

experiments. The increased irregularity is also clearly visible when looking at the visualizations:
For 10,000 points and fps, the GMMs appear chaotic as Gaussians of different sizes are scattered
on the surface (Figure 5.10). An alternative for getting smoother results when using fewer points
is the use of the rnp-initialization, which results in lower irregularities for 10,000 points. However,
it comes at the cost of an increased reconstruction error.

Using fewer points also leads to an increase in Gaussian variation V. This variation is much
higher when using rnp rather than for fps.

Reducing the number of points reduces the time per iteration linearly. Switching from 100,000 to
10,000 points speeds up the algorithm from 40 to 4 seconds.

Number of Gaussians

The number of Gaussians should have a direct impact on the results, as it defines the modeling
power of the GMM. We tested the algorithm using 64, 256, 512, and 1,024 Gaussians, with
100,000 points, fps-initialization and ε = 10−5. The results are shown in Table 5.4. The average
R and I values are plotted in Figure 5.9. Exemplary GMMs are shown in Figure 5.11.
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(a) 10,000 points, fps (b) 50,000 points, fps (c) 100,000 points, fps

(d) 10,000 points, rnp (e) 50,000 points, rnp (f) 100,000 points, rnp

Figure 5.10: Resulting GMMs for the model bed_0001, using different input point counts and
initialization strategies. A clear increase in irregularity can be observed when reducing the point
count.

As expected, the reconstruction error R decreases with increased Gaussian count. The irregularity
I is highest for 64 Gaussians. For the other Gaussian counts, it is on a similar level, with 512 being
slightly superior to the others. The Gaussian variation V decreases with increasing Gaussian
count. Similar to the point count, the number of Gaussians directly impacts the execution time by
changing the time of each iteration.

K
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
64 -9.880 0.032 1.140 0.024 0.5694 0.0017 0.649 0.014 0.000 0.000 7.257 2.731
256 -9.594 0.024 0.650 0.010 0.5479 0.0011 0.547 0.015 0.000 0.000 22.162 6.865
512 -9.512 0.022 0.563 0.008 0.5461 0.0013 0.497 0.015 0.000 0.000 39.417 11.654
1024 -9.463 0.023 0.527 0.008 0.5492 0.0014 0.460 0.016 0.000 0.000 71.709 16.804

Table 5.4: Results of Gaussian-count-experiments for EM. Best values are formatted in bold.
Most metrics improve with higher Gaussian count. I stays roughly on the same level for 256 and
higher numbers. The execution time rises when using more Gaussians.
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(a) 64 Gaussians (b) 256 Gaussians (c) 512 Gaussians (d) 1,024 Gaussians

Figure 5.11: Resulting GMMs for the model bed_0001, using EM with different numbers of
Gaussians. A rise in accuracy can be observed when increasing the Gaussian count.

5.5.2 Top-Down HEM

In this section, we will describe the results of our experiments done using our implementation of
top-down HEM (Section 4.2). We will inspect the influence of the regularization parameter ε,
the partitioning method, the initialization technique, the number of input points, and the number
of Gaussians. In our experiments, a level was accepted as converged when the change of the
average log-likelihood was less than 0.1 for 20 iterations. To not exceed the available memory,
we configured the algorithm to only process up to 5,120,000 point-Gaussians pairs at once in the
E-step and use sub batches of 10,000 points and 512 Gaussians in the M-step. The execution
times we measured for our PyTorch implementation are higher than the ones reported for the
original C++/CUDA implementation by Eckart et al. [EKT+16].

Regularization

For top-down HEM, we apply the same regularization technique as with classical EM, where we
add a small value to the eigenvalues of the covariance matrices (see Section 4.1.2). This value is
defined relative to the bounding box size. To explore the effect of the regularization parameter ε
for top-down HEM, we tested the values 10−4, 10−5, 10−6, and 10−7 for ε, using 100,000 input
points, 512 Gaussians ( j = 8, l = 3), soft partitioning with λl = 0.1, and the fps-initialization. The
results are displayed in Table 5.5. Results for the average R and I values are plotted in Figure
5.12.

ε
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD

10−4 -10.431 0.030 1.131 0.029 0.5384 0.0011 0.639 0.017 1.530 5.043 7.937 0.929
10−5 -9.627 0.024 0.642 0.010 0.5483 0.0012 1.205 0.034 0.785 4.770 8.817 1.923
10−6 -8.803 0.034 0.567 0.009 0.5568 0.0014 1.812 0.069 0.325 1.396 10.702 3.147
10−7 -7.993 0.065 0.585 0.009 0.5598 0.0013 2.404 0.074 0.445 1.853 12.145 3.946

Table 5.5: Results of ε-experiments for top-down HEM. Best values are formatted in bold. Most
metrics rise with decreasing ε.
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Figure 5.12: Results for top-down HEM regarding reconstruction error R and irregularity I of
our experiments for the regularization parameter, the partitioning method and the initialization
method. Results are interpreted in the corresponding sections.

For a high ε of 10−4, the reconstruction error R is much higher than for the other values. The
lowest error is achieved at 10−6. A low ε of 10−7 does not cause such a high increase of the
reconstruction error as for EM. This is because of the hierarchical structure, which restricts the
final Gaussians from becoming as large as in EM. This way, it reduces the amount of high density
outside the model.

Similarly to EM, a smaller ε leads to increased irregularity I, increased Gaussian variationV,
and higher execution time.

Partitioning

When initializing a new level, top-down HEM can either use hard partitioning, which assigns
each point to the sub-GMM with the highest corresponding responsibility, or soft partitioning,
which may assign each point to multiple sub-GMMs. When using soft partitioning, the parameter
λl controls the minimum responsibility required for a point to be added to a sub-GMM. To
analyze the impact of the different partitioning schemes, we tested the algorithm using both hard
partitioning and soft partitioning with λl = 0.1 and λl = 0.3. Otherwise, 100,000 input points,
512 Gaussians ( j = 8, l = 3), the fps-initialization, and ε = 10−5 were used. Table 5.6 shows the
results. The average R and I are plotted in Figure 5.12. Figure 5.13 shows exemplary GMMs.

The results show a bigger reconstruction error R for SP, λl = 0.1 than for SP, λl = 0.3 and HP.
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Part.
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
SP, λl = 0.1 -9.627 0.024 0.642 0.010 0.5483 0.0012 1.205 0.034 0.785 4.770 8.817 1.923
SP, λl = 0.3 -9.601 0.023 0.602 0.009 0.5535 0.0013 1.100 0.028 0.720 5.063 7.879 1.392

HP -9.614 0.022 0.598 0.009 0.5620 0.0014 1.152 0.031 1.035 5.505 6.653 1.036

Table 5.6: Results of partitioning-experiments for top-down HEM. Best values are formatted in
bold. Harder partitioning methods result in lower reconstruction errors but higher irregularity.

(a) Soft partitioning, λl = 0.1 (b) Soft partitioning, λl = 0.3 (c) Hard partitioning

Figure 5.13: Resulting GMMs for the models bed_0001 and sink_0002, using top-down HEM
with different partitioning methods. Harder methods appear more irregular than more relaxed
ones.

The more relaxed a scheme is, the larger the Gaussians can become, which may lead to outlying
densities. This may partially explain the higher error.

The GMMs constructed by softer techniques appear smoother, while for the harder partitioning
methods the boundaries of the sub-GMMs can be seen (see Figure 5.13). This is also reflected by
the irregularity I, with λl = 0.1 resulting in the most uniform reconstructed point clouds, and
hard partitioning in the most irregular ones. Regarding the Gaussian variationV, soft partitioning
with λt = 0.1 results in a higher value than the harder methods.

The partitioning scheme affects the execution time, as the harder the partitioning scheme, the
fewer Gaussian-point-pairs have to be considered each iteration.
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To summarize, on average, GMMs from softer partitioning schemes are more uniform, but have
higher reconstruction errors and take longer to construct.

Initialization

For top-down HEM we have implemented the initialization techniques rnp, fps, bb, and eigen
(Section 4.2.2). We tested these initialization techniques using soft partitioning with λl = 0.1,
100,000 points, 512 Gaussians ( j = 8, l = 3), and ε = 10−5. The results are shown in Table 5.7.
The average R and I are plotted in Figure 5.12. Exemplary GMMs are shown in Figure 5.14.

init.
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
rnp -9.558 0.025 0.757 0.011 0.5480 0.0012 1.037 0.025 2.335 5.304 7.868 1.374
fps -9.627 0.024 0.642 0.010 0.5483 0.0012 1.205 0.034 0.785 4.770 8.817 1.923
bb -9.564 0.025 0.705 0.012 0.5501 0.0015 0.947 0.026 6.425 19.021 7.628 1.305

eigen -9.554 0.025 0.676 0.011 0.5482 0.0012 0.909 0.028 0.175 1.301 8.059 1.313

Table 5.7: Results of initialization-technique-experiments for top-down HEM. Best values are
formatted in bold. fps shows the lowest L, but best R. RegardingV, bb and eigen are the best.

Initialization technique rnp shows the highest average reconstruction error R. eigen has been
introduced as an alternative to bb and proves to create more accurate results regarding R. The
lowest reconstruction errors are produced by fps.

Regarding irregularity I, no clear difference between the methods can be observed. The average
I for bb is higher than the others. However, the standard errors are high enough to make this
difference unreliable. fps shows the largest Gaussian variationV, followed by rnp. bb and eigen
are on a similar level.

Further differences become visible when looking at the amount of Gaussians that were removed
during the algorithm: While eigen shows the lowest and most reliable average amount of removed
Gaussians from all four methods, bb shows the highest average of 6.425, with a standard deviation
of 19.

(a) rnp (b) fps (c) bb (d) eigen

Figure 5.14: Resulting GMMs for the models bed_0005, bed_0001 and sink_0002, using top-
down HEM with different initialization methods.
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Number of Points

For examining the impact of the number of input points, we tested the algorithm using 10,000,
50,000, and 100,000 points, for soft partitioning with λl = 0.1, 512 Gaussians ( j = 8, l = 3), and
ε = 10−5. As we suspect the initialization methods to have a bigger impact, we test the techniques
fps, eigen, and rnp for all point counts. The results are shown in Table 5.8. The average R and I
values are plotted in Figure 5.15.

Figure 5.15: Results for top-down HEM regarding average reconstruction error R and average
irregularity I of our experiments for the number of points using 512 Gaussians. The three
initialization methods fps, eigen, and rnp were tested. For easier interpretation, results using
the same initialization method are connected by lines in order of the point count. Bars indicate
standard errors of the means. For comparison with Figure 5.12, the results of the regularization-
experiments are also shown in the background. Reducing the point count increases I, but hardly
changes R.

While R shows no clear difference for different point counts, the average irregularity I is
much higher for 10,000 points, although not as high as when using classical EM. Both the
rnp-initialization and the eigen-initialization provide more uniform results than fps, at the cost of
higher reconstruction errors. This can be seen in Figure 5.16. The Gaussian variationV reduces
when using more points.

The execution time ranges from around two seconds for 10,000 points, to around 8 seconds for
100,000 points.

61



5. Construction: Evaluation

init. N
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
fps 10,000 -9.680 0.023 0.643 0.010 0.5956 0.0020 1.388 0.037 1.225 4.724 2.726 0.455
fps 50,000 -9.628 0.024 0.647 0.011 0.5519 0.0013 1.291 0.047 0.445 1.896 5.326 1.080
fps 100,000 -9.627 0.024 0.642 0.010 0.5483 0.0012 1.205 0.034 0.785 4.770 8.817 1.923

eigen 10,000 -9.592 0.025 0.670 0.011 0.5821 0.0019 0.990 0.023 0.585 0.000 1.782 0.000
eigen 50,000 -9.556 0.025 0.672 0.010 0.5504 0.0012 0.904 0.027 0.245 0.000 4.422 0.000
eigen 100,000 -9.554 0.025 0.676 0.011 0.5482 0.0012 0.909 0.028 0.175 0.000 8.059 0.000
rnp 10,000 -9.598 0.025 0.749 0.011 0.5785 0.0017 1.167 0.035 2.700 6.868 1.691 0.329
rnp 50,000 -9.562 0.025 0.763 0.011 0.5502 0.0012 1.061 0.028 1.505 4.498 4.464 0.715
rnp 100,000 -9.558 0.025 0.757 0.011 0.5480 0.0012 1.037 0.025 2.335 5.304 7.868 1.374

Table 5.8: Results of initialization-technique-experiments for top-down HEM. Best I values,V
values, and execution times per initialization method are formatted in bold. I andV are worse
for 10,000 points than for higher numbers. L and R show hardly any differences for different
point counts. eigen and rnp produce lower I values than fps at the cost of higher R.

(a) fps, 10,000 points (b) eigen, 10,000 points (c) rnp, 10,000 points

(d) fps, 50,000 points (e) eigen, 50,000 points (f) rnp, 50,000 points

Figure 5.16: Resulting GMMs for the model bed_0001 using top-down HEM with different
numbers of input points and initialization strategies (results for 100,000 points are shown in
Figure 5.14). An increase in irregularity can be observed when reducing the point count.
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Number of Gaussians

In top-down HEM, the number of Gaussians K equals jl, where l is the number of levels, and
j is the number of Gaussians per sub-GMM. To examine the behavior of different numbers of
Gaussians, we tested the numbers 43 (64), 82 (64), 44 (256), 83 (512), and 45 (1024). These were
tested using soft partitioning with λl = 0.1, 100,000 input points, fps-initialization, and ε = 10−5.
The results are shown in Table 5.9. The average R and I values are plotted in Figure 5.17.

Figure 5.17: Results for top-down HEM regarding average reconstruction error R and average
irregularity I of our experiments for the number of Gaussians using 100,000 points and the
fps-initialization. Bars indicate standard errors of the means. For comparison with Figure 5.12
and 5.15, the results of the regularization-experiments and the point count-experiment (with
fps-initialization) are also shown in the background. A lower number of Gaussians leads to higher
R and I.

jl (K)
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD

43(64) -10.217 0.037 1.471 0.045 0.5991 0.0085 1.262 0.051 0.000 0.000 2.994 0.505
82(64) -10.059 0.035 1.267 0.026 0.5821 0.0037 1.039 0.033 0.035 0.495 2.856 0.761
44(256) -9.845 0.029 0.907 0.029 0.5648 0.0037 1.505 0.076 0.040 0.330 6.627 1.121
83(512) -9.627 0.024 0.642 0.010 0.5483 0.0012 1.205 0.034 0.785 4.770 8.817 1.923
45(1024) -9.640 0.025 0.680 0.020 0.5503 0.0017 1.661 0.086 1.480 3.069 17.630 2.377

Table 5.9: Results of initialization-technique-experiments for top-down HEM. Best values are
formatted in bold. A higher number of Gaussians leads to better L and I. R is best for 512
Gaussians. V is lower for j = 8 than for j = 4.
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We see a decrease of the reconstruction error R for higher numbers of Gaussians, except for
1,024 Gaussians, where the reconstruction error is slightly higher than for 512 Gaussians. We
also observe that the result for 64 Gaussians depends on the used j/l-combination, as 82 provides
better results than 43. The irregularity I is lower when using more Gaussians. The Gaussian
variationV is lower when using j = 8 than when using j = 4. The variations per j increase with
higher l.

5.5.3 Geometrically Regularized Bottom-Up HEM

The implementation of geometrically regularized bottom-up HEM provides a large number of
parameters. We limit this evaluation to the most important ones: The fixed initialization distance,
the alpha-value, the number of points, and the number of Gaussians. The algorithm would also
provide alternative initialization strategies, such as using k nearest neighbors for initialization
rather than a fixed radius or initializing with isotropic Gaussians of a fixed standard deviation.
The reduction factor we left at its default value of three.

Initialization-Distance

The initialization of the algorithm chooses the initial covariances by analyzing the distribution of
the points’ neighborhoods of radius r. In the implementation, this radius is given in percent of the
diagonal of the input point cloud’s bounding box.

To examine the impact of the initialization distance, we tested the values 0.8%, 0.9%, 1.0%, 1.1%,
1.2%, and 1.3% using α = 4, 100,000 input points, and 512 Gaussians. The results are shown in
Table 5.10. Average R and I are plotted in Figure 5.18. Exemplary GMMs are displayed Figure
5.19.

dist
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
0.8% -8.268 0.071 0.933 0.023 0.5869 0.0009 4.534 0.231 0.000 0.000 1.482 1.085
0.9% -8.348 0.072 0.853 0.021 0.5768 0.0007 3.364 0.174 0.000 0.000 1.351 0.708
1.0% -8.420 0.073 0.829 0.021 0.5690 0.0005 2.719 0.128 0.000 0.000 1.400 0.777
1.1% -8.507 0.074 0.834 0.025 0.5644 0.0005 2.304 0.123 0.000 0.000 1.535 0.901
1.2% -8.611 0.074 0.845 0.027 0.5614 0.0005 2.036 0.111 0.000 0.000 1.655 0.998
1.3% -8.707 0.075 0.866 0.028 0.5586 0.0006 1.787 0.086 0.000 0.000 1.847 1.168

Table 5.10: Results of initialization-distance-experiments for geometrically regularized bottom-up
HEM. Best values are formatted in bold. I andV decrease with higher distance. The lowest R
value is given for 1.0%, however, the standard errors are too high to show a clear result.

The average reconstruction error is highest at 0.8%. The other tested initial distances do not show
a clear difference in R, as their standard errors overlap. The irregularity I and Gaussian variation
V both reduce when using higher distances.
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Figure 5.18: Results for geometrically regularized bottom-up HEM regarding average reconstruc-
tion error R and average irregularity I of our experiments for the initialization distance, alpha,
and the number of Gaussians. Bars indicate standard errors of the means. All three parameters
impact both R and I. These results are interpreted in the corresponding sections.

Alpha

The α-parameter controls the merging of Gaussians by determining the KL-divergence-threshold
ρ, as ρ = α2/2. The higher α is, the farther away Gaussians can be from each other to be merged.
To examine the impact of the α-parameter, we tested the values 1, 2, 3, 4, and 5 using 1.1% as
initialization distance, 100,000 input points, and 512 Gaussians. The results are shown in Table
5.11. Average R and I are plotted in Figure 5.12. Exemplary GMMs are displayed Figure 5.20.

α
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
1 -8.467 0.067 0.746 0.015 0.5808 0.0006 3.210 0.133 0.000 0.000 12.536 8.497
2 -8.433 0.068 0.745 0.017 0.5803 0.0010 3.179 0.165 0.000 0.000 2.184 2.917
3 -8.444 0.070 0.739 0.014 0.5698 0.0005 2.701 0.138 0.000 0.000 1.181 0.834
4 -8.507 0.074 0.834 0.025 0.5644 0.0005 2.304 0.123 0.000 0.000 1.535 0.777
5 -8.635 0.079 1.044 0.039 0.5637 0.0007 2.173 0.097 0.000 0.000 1.867 1.022

Table 5.11: Results of initialization-distance-experiments for geometrically regularized bottom-up
HEM. Best values are formatted in bold. R is best for lower α, but I andV are better for higher
α.

The reconstruction error is lowest for α ≤ 3. A higher α generally leads to smaller irregularities
I and Gaussian variationsV.

65



5. Construction: Evaluation

(a) 0.9% (b) 1.1% (c) 1.3%

Figure 5.19: Resulting GMMs for the model bed_0001 using geometrically regularized bottom-up
HEM with different initialization distances. The decrease of irregularity and Gaussian variation
can be observed.

(a) α = 1 (b) α = 3 (c) α = 5

Figure 5.20: Resulting GMMs for the model bed_0001 using geometrically regularized bottom-up
HEM with different α-values. Low α leads to more irregular GMMs with many small Gaussians,
while high α leads to smoother GMMs.

While most configurations lead to execution times below two seconds, using α = 1 leads to a
significantly higher execution time of 12.5 seconds. A reduced alpha leads to more Gaussians
becoming orphans, as they are not close enough to any of the selected parent Gaussians. In this
case, our extension has to find the nearest parents for the orphans, which increases the execution
time.

Number of Points

For inspecting the behavior of the algorithm with different numbers of input points, we tested
10,000, 50,000, and 100,000 points with initialization distance 1.1%, α = 4, and 512 Gaussians.
The results are shown in Table 5.12.

Reducing the number of points from 100,000 to 10,000 has a strong negative effect on R, I, and
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V. The quality of the results is reduced significantly, as illustrated in Figure 5.21. Using 50,000
points does not worsen the results as dramatically.

N
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
10,000 -8.967 0.063 1.529 0.054 0.6470 0.0017 7.317 0.311 0.000 0.000 0.222 0.154
50,000 -8.531 0.071 0.856 0.024 0.5784 0.0008 3.282 0.179 0.000 0.000 0.541 0.286
100,000 -8.507 0.074 0.834 0.025 0.5644 0.0005 2.304 0.123 0.000 0.000 1.535 0.901

Table 5.12: Results of point-count-experiments for geometrically regularized bottom-up HEM.
Best values are formatted in bold. Using more points takes longer, but is favorable in regards of
all our other metrics.

(a) 10,000 (b) 50,000 (c) 100,000

Figure 5.21: Resulting GMMs for the model bed_0001 using geometrically regularized bottom-up
HEM with different numbers of points. A clear decrease in accuracy and regularity can be seen
for 10,000 points.

Number of Gaussians

Contrary to the other tested algorithms, this algorithm is intended for higher numbers of Gaussians
and is faster the more Gaussians are used. We can therefore examine higher numbers that are
not possible for the other algorithms. To examine the behavior of the algorithm we tested the
algorithm with 64, 256, 512, 1,024, 8,000, 16,000, and 32,000 Gaussians using an initialization
distance of 1.1%, α = 4, and 100,000 input points. For 4,000 and more Gaussians, the desired
Gaussian count is usually reached without taking extra care of orphans. Therefore, we disabled
the respective part of our extension in those cases. The results are shown in Table 5.13. Average
R and I for 512 and higher numbers are plotted in Figure 5.18. Example GMMs are shown in
Figure 5.22.

The reconstruction error R is lower the more Gaussians are used. Using 8,000 or more Gaussians
results in the lowest errors in this evaluation. From 64 to 1,024 Gaussians, the irregularity I
decreases, but from 4,000 upwards it shows a rise again. The Gaussian variationV is reducing
when using more Gaussians.
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K
L R I V 0-Gaussians execution time [s]

AVG SEM AVG SEM AVG SEM AVG SEM AVG STD AVG STD
64 -9.567 0.083 3.477 0.108 0.6709 0.0028 3.430 0.132 0.000 0.000 1.553 1.009
256 -8.807 0.078 1.401 0.046 0.5945 0.0014 3.158 0.175 0.000 0.000 1.605 1.017
512 -8.507 0.074 0.834 0.025 0.5644 0.0005 2.304 0.123 0.000 0.000 1.535 0.901

1,024 -8.307 0.072 0.619 0.016 0.5555 0.0004 1.971 0.099 0.000 0.000 1.592 1.013
4,000 -8.006 0.069 0.458 0.008 0.5581 0.0004 1.229 0.036 -0.005 0.071 0.886 0.623
8,000 -7.939 0.068 0.445 0.007 0.5667 0.0005 1.150 0.034 0.000 0.000 0.859 0.629
16,000 -7.885 0.068 0.437 0.006 0.5780 0.0006 1.060 0.031 0.000 0.000 0.858 0.609
32,000 -7.851 0.068 0.436 0.006 0.5890 0.0008 1.049 0.031 0.000 0.000 0.815 0.614

Table 5.13: Results of Gaussian-count-experiments for geometrically regularized bottom-up
HEM. Best values are formatted in bold. Most metrics are best for higher numbers of Gaussians.
I is an exception and is best for 1,024 Gaussians.

(a) 64 (b) 256 (c) 512 (d) 1,024

(e) 8,000 (f) 16,000 (g) 32,000

Figure 5.22: Resulting GMMs for the model bed_0001 using geometrically regularized bottom-up
HEM with different numbers of Gaussians.

5.6 Comparison

In this section, we will compare selected configurations of the three discussed algorithms.
Additionally, we will also compare them to the fps-initialization technique (Section 4.1.3). We
will first compare the results when using a sufficient amount of input points (100,000) and
afterward talk about the results when using lower numbers of points (10,000).
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5.6.1 Sufficient Points

In this section, we examine the algorithms when using 512 Gaussians and 100,000 points. To
compare the algorithms, we will choose a few configurations per algorithm to compare.

• For EM, we will use the configurations using the fps-initialization and ε = 10−5 (EM5)
or ε = 10−6 (EM6). We do not consider other initialization techniques, as they would not
improve the results.

• For top-down HEM, we use soft partitioning with λl = 0.1 and the fps-initialization. For
the regularization parameter ε we choose 10−5 (TDS5), 10−6 (TDS6), and 10−7 (TDS7).

• For geometrically regularized bottom-up HEM, we use an initialization distance of 1.1%
and the alpha values 2 (BU2), 3 (BU3), and 4 (BU4).

• For the fps-initialization, we test different regularization parameter values: 10−5 (FPS5),
10−6 (FPS6), and 10−7 (FPS7).

Exemplary results for some of these methods are displayed in Figure 5.26.

The average execution times are plotted in Figure 5.23: EM is much slower than the other methods:
It needs more than half a minute. Top-down HEM’s execution time is around 10 seconds. The
fps-initialization takes only two to three seconds. Geometrically regularized bottom-up HEM is
the fastest technique with two seconds or less. As stated before, these times are specific to our
implementations and do not describe the algorithms in general.

To accelerate the slower algorithms, it is an option to use only half of the points (50,000). This
hardly changes the reconstruction error R, and only slightly increases I andV, while halving the
execution time (see Section 5.5).

In figure 5.24, the average reconstruction errors R, irregularities I, and Gaussian variationsV
are plotted for the selected algorithms. While EM might be the slowest algorithm, it also provides
the best results regarding the reconstruction error, and also provides the lowest irregularity when
using ε = 10−5. The results of top-down HEM regarding R and I are worse, but still close to
EM. Geometrically regularized bottom-up HEM produces the worst result regarding R and is
also worse than the previous two algorithms in terms of I. It might be the fastest method but the
results are inferior to the other algorithms for such "low" numbers of Gaussians. Finally, when
using a low regularization parameter, the fps-initialization can create results with reconstruction
errors close to EM and top-down HEM at the cost of a much higher irregularity.

For applications where the Gaussian variation matters, EM and fps are good options. Top-down
HEM’s GMMs are more varied, and geometrically bottom-up HEM shows the highest Gaussian
variation.

In this comparison, geometrically regularized bottom-up HEM seems inferior. However, this
algorithm is optimized for large numbers for Gaussians. It is the only one of our algorithms that
can generate GMMs with 8,000 or more Gaussians, as the other ones would run into memory
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Figure 5.23: Comparison of execution times of EM (blue), top-down HEM (orange), bottom-up
HEM (gray), and fps-initialization (yellow) using 512 Gaussians.

problems. Additionally, it is also much faster than the other algorithms would be, as it usually
takes less than a second to execute. When using such high amounts of Gaussians is desired,
geometrically regularized bottom-up HEM is a very efficient and powerful algorithm, that creates
accurate results with low reconstruction errors (see Figures 5.25 and 5.27).

To summarize, EM produces the best results regarding all our metrics. Top-down HEM is a fast
approximation for EM. The Gaussian sizes are more varied, but regarding reconstruction error and
irregularity, the results are only slightly worse than EM. The fps-initialization by itself provides
results quickly and with good reconstruction errors and low Gaussian variation. However, they
have a high irregularity. Geometrically regularized bottom-up HEM is inferior for 512 Gaussians
or less, but when using several thousand Gaussians it provides good results very fast.

5.6.2 Low Point Count

When using a lower number of points the results get worse for all algorithms. To examine which
algorithms are favorable when only dealing with a low number of points, we examine the results
of our algorithms when using 512 Gaussians and only 10,000 input points. Figure 5.28 shows the
results for R and I.

In this comparison, EM still creates the lowest average reconstruction error, at the cost of very high
irregularity. Top-down HEM is inferior to EM regarding its reconstruction error, however, it shows
much lower irregularity. Geometrically regularized bottom-up HEM provides inferior results
regarding the reconstruction error but has still a lower irregularity than EM or fps. Examples are
shown in Figures 5.10, 5.16, and 5.21.

We conclude that top-down HEM is the best suited algorithm in this case as it provides a good
trade-off between low reconstruction error and low irregularity.
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5.6. Comparison

Figure 5.24: Average R, I, andV values for EM, top-down HEM with soft partitioning (TDS),
geometrically bottom-up HEM (BU) and the furthest point sampling initialization technique
(FPS) using 512 Gaussians. EM provides the best results in all three metrics.
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5. Construction: Evaluation

Figure 5.25: The solid line shows the average R, I, andV values for geometrically regularized
bottom-up HEM with different numbers of Gaussians. For comparison with Figure 5.24, the
results from the other algorithms for 512 Gaussians are shown as dotted lines. Higher number of
Gaussians lead to the best R-values in this evaluation. V reduces with higher numbers, but I
rises from 4,000 Gaussians onwards.
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5.6. Comparison

(a) EM5 (b) TDS5

(c) FPS5 (d) BU4

Figure 5.26: Exemplary results of four selected algorithm configurations on the model pi-
ano_0004, using 512 Gaussians and 100,000 input points.
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5. Construction: Evaluation

Figure 5.27: Exemplary results of geometrically regularized bottom-up HEM on the model
piano_0004, using 16,000 Gaussians and 100,000 input points.

Figure 5.28: Average R and I values for the tested methods using 10,000 points. Labels indicate
the used initialization method. Top-down HEM provides a good trade-off between low R and low
I.
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CHAPTER 6
Conclusion

In this section, we summarize our work and discuss the most important findings and possible
future work.

6.1 Visualization

We have implemented a tool for visualizing GMMs. This tool enables both isoellipsoid visual-
izations as well as density visualizations. For the density visualization, we have presented the
mathematical foundations used for calculating the accumulated density per pixel. To accelerate
the density visualization, a splatting approach was implemented that limits each Gaussian’s
extent at a configurable threshold. This way, real-time rendering of thousands of Gaussians
is possible. The visualizations were integrated into a graphical user interface, which provides
configuration of the visualization parameters, camera navigation, and inspection of individual
Gaussians. Additionally, a Python interface was implemented that enables fast access to the
visualization functionality from other programs.

Possible future work includes the extension of existing visualizations, as well as the design of
further visualization techniques: A density visualization with more sophisticated options for
absorption coefficient and source term would improve the quality of the results. To approximate
the resulting volume-rendering integral, a fast conversion technique of GMMs into voxel grids
would be required. Furthermore, isosurface visualization of GMMs remains an open topic.
Isosurfaces could be approximated by volume-rendering techniques or be rendered by extending
the approach by Blinn [Bli82] to work on the GPU with arbitrary GMMs.

6.2 Construction

We have implemented both EM and top-down HEM in Python using PyTorch. We added several
strategies to make the algorithms numerically stable. Using a regularization is necessary to prevent
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6. Conclusion

Gaussians from thinning arbitrarily and ultimately reducing the GMM’s quality. Furthermore, we
have implemented several initialization techniques for both algorithms.

We have adapted the source code of geometrically regularized bottom-up HEM by Preiner et al.
[PMA+14] such that it always generates the desired number of Gaussians.

We have defined several criteria to evaluate the algorithms by the quality of their produced
GMMs. The likelihood, which is maximized by the EM-algorithm, is not useful for our purposes,
as it does not consider densities outside the surfaces. We gave examples of GMMs with high
likelihoods that are not a good representation of the underlying models. Instead, we rely on a
reconstruction error based on the Chamfer distance to measure the accuracy of the fit. Another
important metric is the irregularity, which describes the uniformity of point clouds sampled from
the GMMs. Additionally, we inspected variation of Gaussians, execution time, and the number of
zero-weight-Gaussians.

We compared EM, top-down HEM, geometrically regularized bottom-up HEM, and our fps-
initialization regarding those metrics. EM is a powerful algorithm that creates the best results
given a sufficient amount of points. Using too few points, the results show a strong increase
in irregularity. The irregularity can be reduced by changing the initialization technique, which
comes at the cost of an increased reconstruction error. Our EM implementation is the slowest
technique. When a faster technique is required, top-down HEM is a good alternative. The quality
of its results regarding reconstruction error and irregularity is slightly inferior compared to EM.
The fps-initialization can produce results with reconstruction errors close to EM or top-down
HEM, however, they are much more irregular. Finally, geometrically regularized bottom-up
HEM produces inferior results for 1,024 Gaussians or less regarding their reconstruction errors.
However, it can produce high-quality GMMs for higher numbers of Gaussians very efficiently.

Possible future work includes faster implementations of the EM and top-down HEM algorithm,
as well as the investigation of further GMM construction algorithms. We have illustrated in
this thesis that the likelihood is not a perfect measurement for the quality of fit for our use case.
However, many algorithms, including all EM-based algorithms, follow the maximum-likelihood
approach. It might be an option to investigate more alternative approaches, and potentially
design algorithms that specifically aim to reduce the reconstruction error rather than increase the
likelihood.
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